Mineralium Deposita

, Volume 52, Issue 5, pp 747–768 | Cite as

In situ LA–ICP-MS and EPMA trace element characterization of Fe–Ti oxides from the phoscorite–carbonatite association at Phalaborwa, South Africa

  • Lorenzo MilaniEmail author
  • Robert Bolhar
  • R. Grant Cawthorn
  • Dirk Frei


In situ laser ablation inductively coupled plasma mass spectrometry (LA–ICP-MS) and electron probe microanalysis (EPMA) are used to characterize magnetite and ilmenite of the phoscorite–carbonatite association at Phalaborwa. We trace the behavior of the compatible elements for two different generations of magnetite related to (1) a magmatic stage, with variable Ti–V content, which pre-dates the copper mineralization, and (2) a late hydrothermal, low-Ti, low-temperature event, mostly post-dating sulfide formation. Magnetite is shown to be a robust petrogenetic indicator; no influence on its chemical composition is detected from the intergrowth with the accompanying phases, including the interaction with coexisting sulfides. High spatial resolution EPMA characterize the tiny late-stage hydrothermal magnetite veins, as well as the ilmenite granular and lamellar exsolutions mostly developed in the magnetite from the phoscorite. By combining geochemical data with geothermo-oxybarometry calculations for magnetite–ilmenite pairs, we infer that the most primitive magnetite probably formed at oxygen fugacity above the nickel nickel oxide (NNO) buffer, revealing an evolutionary trend of decreasing temperature and oxygen fugacity. Geochemical similarity exists between magnetite from phoscorite and carbonatite, thus supporting a common mantle source for the phoscorite–carbonatite association.


Carbonatite LA–ICP-MS EPMA Geothermobarometry Magnetite Sulfides 



LM and RB acknowledge funding from the Department of Science and Technology - National Research Foundation Centre of Excellence for Integrated Mineral and Energy Resource Analysis (CIMERA). Reviews by Thomas Angerer, Anton R. Chakhmouradian, Sarah A.S. Dare, and Francis Wall and comments by Editor-in-Chief Georges Beaudoin and Associate Editor Robert L. Linnen helped to improve the manuscript. Thanks are extended to Palabora Mining Company Ltd. for providing most of the studied rocks, in particular to Paulien Lourens and Thabitha Moyana. Paul Nex (Wits University) kindly provided part of the samples, as well as useful discussion. Peter Horvath (Wits University) is thanked for his assistance during EPMA work.

Supplementary material

126_2016_696_MOESM1_ESM.pdf (1006 kb)
Online Resource 1 Trace element compositions (in ppm) and analytical conditions of LA-ICP-MS analyses of magnetite and granular ilmenite at Phalaborwa. Phos = phoscorite; BC = banded carbonatite; TC = transgressive carbonatite. In Italic: element contents likely related to contamination by microinclusions and not included in calculations in Table 2 (PDF 1006 kb)
126_2016_696_MOESM2_ESM.pdf (98 kb)
Online Resource 2 Analytical conditions and EPMA analyses (in ppm) of late-stage, low-Ti hydrothermal magnetite in microveinlets and magnetite-ilmenite pairs at Phalaborwa. Abbreviations: Mag = magnetite; Ilm = ilmenite; Phos = phoscorite; BC = banded carbonatite; TC = transgressive carbonatite; n.d. = not detected (PDF 97 kb)


  1. Aldous R (1980) Ore genesis in copper bearing carbonatites: a geochemical, mineralogical and fluid inclusion study. PhD thesis, Imperial College, Univerity of London, LondonGoogle Scholar
  2. Bagdasarov YA (1981) Chromium geochemistry in the rocks of carbonatite complexes. Geol Rudn Mestorozhd 36:85–89Google Scholar
  3. Bagdasarov YA (1982) Geochemical features of magnetites from carbonatites and other rocks of the Chernigov Zone, Azov Region. Dokl. Akad. Nauk SSSR 252:208–212Google Scholar
  4. Bailey DK, Kearns S (2002) High-Ti magnetite in some fine-grained carbonatites and magnetic implications. Mineral Mag 66:379–384CrossRefGoogle Scholar
  5. Balan E, De Villiers JPR, Eeckhout SG, Glatzel P, Toplis MJ, Fritsch E, Allard T, Galoisy L, Calas G (2006) The oxidation state of vanadium in titanomagnetite from layered basic intrusions. Am Mineral 91:953–956CrossRefGoogle Scholar
  6. Berry F, Greaves C, Helgason O, McManus J (1999) Synthesis and characterisation of tin-doped iron oxides. J Mater Chem 9:223–226CrossRefGoogle Scholar
  7. Bordage A, Balan E, de Villiers JR, Cromarty R, Juhin A, Carvallo C, Calasa G, Sunder Raju PV, Glatzel P (2011) V oxidation state in Fe-Ti oxides by high-energy resolution fluorescence-detected X-ray absorption spectroscopy. Phys Chem Miner 38:449–458CrossRefGoogle Scholar
  8. Boutroy E, Dare SAS, Beaudoin G, Barnes S-J, Lightfoot PC (2014) Magnetite composition in Ni-Cu-PGE deposits worldwide and its application to mineral exploration. J Geochem Explor 145:64–81CrossRefGoogle Scholar
  9. Bowles JFW (1977) A method of tracing the temperature and oxygen-fugacity histories of complex magnetite-ilmenite grains. Mineral Mag 41:103–109CrossRefGoogle Scholar
  10. Boynton WV (1985) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry, Developments in Geochemistry, vol 2. Elsevier, Amsterdam, pp. 115–152Google Scholar
  11. Buddington AF, Lindsley DH (1964) Iron–titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357CrossRefGoogle Scholar
  12. Bulakh AG, Rudashevsky NS, Karchevsly PI (1988) Gold, silver, sulphides and rare-earth minerals in carbonatites of the Loolekop deposit (RSA). Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva 3:45–54 in RussianGoogle Scholar
  13. Carew MJ (2004) Controls on Cu–Au mineralisation and Fe-oxide metasomatism in the Eastern Fold Belt, NW Queensland, Australia. PhD Thesis, James Cook University, Townsville, pp 213–277Google Scholar
  14. Carmichael ISE, Ghiorso MS (1990) Controls on oxidation-reduction relations in magmas. Mineral Soc Am, Washington, DC, Rev Mineral 24:191–212Google Scholar
  15. Cawthorn RG, McCarthy TS (1980) Variations in Cr content of magnetite from the upper zone of the Bushveld Complex—evidence for heterogeneity and convection currents in magma chambers. Earth Planet Sci Lett 46:335–343CrossRefGoogle Scholar
  16. Cawthorn RG, Molyneux TG (1986) Vanadiferous magnetite deposits of the Bushveld Complex. In: Anhaeusser, CR, Maske, S (eds) Mineral deposits of southern Africa. Geol Soc S Afr, pp 1251–1266Google Scholar
  17. Chakhmouradian AR (2006) High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol 235:138–160CrossRefGoogle Scholar
  18. Chakhmouradian AR, Reguir EP, Zaitsev AN (2015) Calcite and dolomite in intrusive carbonatites. I. Textural variations. Mineral Petrol. doi: 10.1007/s00710-015-0390-6 Google Scholar
  19. Chen WT, Zhou M-F, Li X, Gao J-F, Hou K (2015) In-situ LA-ICP-MS trace elemental analyses of magnetite: Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan Province, NW India. Ore Geol Rev 65:929–939CrossRefGoogle Scholar
  20. Chung D, Zhou MF, Gao JF, Chen WT (2015) In-situ LA–ICP-MS trace elemental analyses of magnetite: the late Palaeoproterozoic Sokoman iron formation in the Labrador Trough, Canada. Ore Geol Rev 65:917–928CrossRefGoogle Scholar
  21. Coertze FJ, Burger AJ, Walraven F, Marlow AG, MacCaskie DR (1978) Field relations and age determinations in the Bushveld Complex. Trans Geol Soc S Afr 81:1–11Google Scholar
  22. Cordeiro PFO, Brod JA, Dantas EL, Barbosa ER (2010) Mineral chemistry, isotope geochemistry and petrogenesis of niobium-rich rocks from the Catalão I carbonatite-phoscorite complex, Central Brazil. Lithos 118:223–237CrossRefGoogle Scholar
  23. Dalton JA, Wood BJ (1993) The compositions of primary carbonate melts and their evolution through wallrock reaction with the mantle. Earth Planet Sci Lett 119:511–525CrossRefGoogle Scholar
  24. Dare SAS, Barnes S-J, Beaudoin G (2012) Variation in trace element content of magnetite crystallized from a fractionating sulphide liquid, Sudbury, Canada: implications for provenance discrimination. Geochim Cosmochim Acta 88:27–50CrossRefGoogle Scholar
  25. Dare SAS, Barnes SJ, Beaudoin G, Meric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Miner Depos 49:785–796CrossRefGoogle Scholar
  26. Dawson JB, Steele IM, Smith JV, Rivers ML (1996) Minor and trace element chemistry of carbonates, apatites and magnetites in some African carbonatites. Mineral Mag 60:415–425CrossRefGoogle Scholar
  27. Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Depos 46:319–335CrossRefGoogle Scholar
  28. Durasova NA, Ryabchikov ID, Barsukov VL (1986) Oxidation-reduction potential and the behaviour of tin in magmatic systems. Geol Rund Mestorozh 1:5–11 in RussianGoogle Scholar
  29. Eggler DH (1989) Carbonatites, primary melts, and mantle dynamics. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp. 561–579Google Scholar
  30. Eriksson, SC (1982) Aspects of the petrochemistry of the Phalaborwa Complex, Northeastern Transvaal, South Africa. PhD thesis, University of the Witwatersrand, Johannesburg, p 495Google Scholar
  31. Eriksson SC (1989) Phalaborwa: a saga of magmatism, metasomatism and miscibility. In: Bell K (ed) Carbonatites genesis and evolution. Unwin Hyman, London, pp. 221–254Google Scholar
  32. Forster IF (1958) Paragenetical ore mineralogy of the Loolekop-Phalaborwa carbonatite complex, Eastern Transvaal. Trans Geol Soc S Afr 61:359–363Google Scholar
  33. Gallii SA, Krochuk VM, Kozak SA (1982) Genetic features of magnetite from carbonatites of the Ukrainian Shield. Mineral Zh 4:85–89 in RussianGoogle Scholar
  34. Gapeev AK, Tselmovich VA (1983) Microstructure of synthetic titanomagnetites oxidized under high partial oxygen pressure. Fizika Zemli 12:91–95 in RussianGoogle Scholar
  35. Ghiorso MS, Sack O (1991) Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contrib Mineral Petrol 108:485–510CrossRefGoogle Scholar
  36. Grigsby JD (1990) Detrital magnetite as a provenance indicator. J Sed Petrol 60:940–951Google Scholar
  37. Groves DI, Vielreicher NM (2001) The Phalaborwa carbonatite-hosted magnetite-copper sulphide deposit, South Africa: an end-member of the iron-oxide copper-gold-rare element deposit group? Miner Depos 36:89–194Google Scholar
  38. Guzmics T, Mitchell RH, Szabo C, Berkesi M, Milke R, Abart R (2011) Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis. Contrib Mineral Petrol 161:177–196CrossRefGoogle Scholar
  39. Haggerty SE (1991) Oxide textures: a mini-atlas. In: Mineral Soc Am, Rev Mineral 25:129–219Google Scholar
  40. Hammouda T, Chantel J, Devidal JL (2010) Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochim Cosmochim Acta 74:7220–7235CrossRefGoogle Scholar
  41. Hanekom HJ, van Standen CM, Smit PJ, Pike DR (1965) The geology of the Palabora Igneous Complex, South Africa. Geological survey handbook, Memoir 54Google Scholar
  42. Hanson BZ, Delano JW (1992) Experimental data bearing on the oxidation state of chromium and vanadium in mafic volcanics. Lunar Planet Sci 23:481–482Google Scholar
  43. Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286CrossRefGoogle Scholar
  44. Heinrich EW (1970) The Phalaborwa carbonatitic complex—a unique copper deposit. Can Mineral 10:585–598Google Scholar
  45. Hennig-Michaeli C (1968) Mikroskopische untersuchungen an Hanstücken der Kupfererlagerstätte am Loolekop im Phalaborwa Komplex, N-E Transvaal, Sudafrikanische Union. Mineralogische Diplomarbeit Institut für Mineralogie und Lagerstättenlehre der Rheinish-Westfälische Technische Hochschule, AachenGoogle Scholar
  46. Hoefs J, Nielsen H, Schidlowski M (1968) Sulfur isotope abundances in pyrite from the Witwatersrand conglomerates. Econ Geol 63:975–977CrossRefGoogle Scholar
  47. Horn I, Foley SF, Jackson SE, Jenner GA (1994) Experimentally determined partitioning of high field strength- and selected transition elements between spinel and basaltic melt. Chem Geol 117:193–218CrossRefGoogle Scholar
  48. Huang X-W, Zhou M-F, Qi L, Gao J-F, Wang Y-W (2013) Re–Os isotopic ages of pyrite and chemical composition of magnetite from the Cihaimagmatic–hydrothermal Fe deposit, NW China. Miner Depos 48:925–946CrossRefGoogle Scholar
  49. Huberty JM, Konish H, Heck PR, Fournelle J, Valley JW, Xu H (2012) Silician magnetite from the Dales Gorge member of the Brockman iron formation, Hamersley Group, Western Australia. Am Mineral 97:26–37CrossRefGoogle Scholar
  50. Ionov DA, Harmer RE (2002) Trace element distribution in calcite–dolomite carbonatites from Spitskop: inferences for differentiation of carbonatite magmas and the origin of carbonates in mantle xenoliths. Earth Planet Sci Lett 198:495–510CrossRefGoogle Scholar
  51. Jochum KP, Nehring F (2006a) BCR-2: GeoRem preferred values (11/2006), GeoRem
  52. Jochum KP, Nehring F (2006b) BHVO: GeoRem preferred values (11/2006), GeoRem
  53. Jochum KP, Nehring F (2006c) KL2-G: GeoRem preferred values (11/2006), GeoRem
  54. Karchevsky PI, Moutte J (2004) The phoscorite-carbonatite complex of Vuoriyarvi, northern Karelia. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. The Mineralogical Society series 10, pp 163–199Google Scholar
  55. Kjarsgaard BA, Hamilton DL (1989) The genesis of carbonatites by immiscibility. In: Bell K (ed) Carbonatites genesis and evolution. Unwin Hyman, London, pp. 388–404Google Scholar
  56. Kjarsgaard BA, Hamilton DL, Peterson TD (1995) Peralkaline nephelinite/carbonatite liquid immiscibility: comparison between phase compositions in experiments and natural lavas. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. Springer-Verlag, Berlin, pp. 163–190CrossRefGoogle Scholar
  57. Klemme S, Günther D, Hametner K, Prowatke S, Zack T (2006) The partitioning of trace elements between ilmenite, ulvöspinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol 234:251–263CrossRefGoogle Scholar
  58. Kolker A (1982) Mineralogy and geochemistry of Fe–Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis. Econ Geol 77:1146–1158CrossRefGoogle Scholar
  59. Koster van Groos AF, Wyllie PJ (1963) Experimental data bearing on the role of liquid immiscibility in the genesis of carbonatites. Nature 199:801–802CrossRefGoogle Scholar
  60. Krasnova NI, Krezer YL (1995) New data on the nature of fine and ultrafine lamellae in titanomagnetite. Eur J Mineral 7:1361–1372CrossRefGoogle Scholar
  61. Krasnova NI, Balaganskaya EG, Garcia D (2004a) Kovdor – classic phoscorites and carbonatites. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. The Mineralogical Society Series 10, pp 99–132Google Scholar
  62. Krasnova NI, Petrov TG, Balaganskaya EG, Garcia D, Moutte J, Zaitsev AN, Wall F (2004b) Introduction to phoscorites: occurrence, composition, nomenclature and petrogenesis. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. The Mineralogical Society series 10, pp 45–74Google Scholar
  63. Lee MJ, Garcia D, Moutte J, Williams CT, Wall F (2004) Carbonatites and phoscorites from the Sokli Complex, Finland. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. The Mineralogical Society series 10, pp 133–162Google Scholar
  64. Lee MJ, Lee JI, Moutte J (2005) Compositional variation of Fe–Ti oxides from the Sokli complex, northeastern Finland. Geosci J 9:1–13CrossRefGoogle Scholar
  65. Lee WJ, Wyllie PJ (1996) Liquid immiscibility in the join NaAlSi3O8 CaCO3 and the origin of calciocarbonatite magmas. J Petrol 37:1125–1152CrossRefGoogle Scholar
  66. Lee WJ, Wyllie PJ (2000) The system CaO–MgO–SiO2–CO2 at 1 GPa, metasomatic wehrlites, and primary carbonatitic magmas. Contrib Mineral Petrol 138:214–228CrossRefGoogle Scholar
  67. Leeman WP, Ma MS, Murali AV, Schmitt RA (1978) Empirical estimation of magnetite/liquid distribution coefficients for some transition elements. Contrib Mineral Petrol 65:269–272CrossRefGoogle Scholar
  68. Lemarchand F, Villemant B, Calas G (1987) Trace element distribution coefficients in alkaline series. Geochim Cosmochim Acta 51:1071–1081CrossRefGoogle Scholar
  69. Lepage LD (2003) ILMAT: an Excel worksheet for ilmenite–magnetite geothermometry and geobarometry. Comp Geosc 29:673–678CrossRefGoogle Scholar
  70. Lindsley DH (1991) Experimental studies of oxide minerals. Rev Mineral 25:69–106Google Scholar
  71. Lindstrom DJ (1976) Experimental study of the partitioning of the transition metals between clinopyroxene and coexisting silicate liquids. Ph.D. Thesis, Univ. of Oregon, Eugene, p 188Google Scholar
  72. Liu PP, Zhou M-F, Chen WT, Gao J-F, Huang X-W (2015) In-situ LA-ICP-MS trace elemental analyses of magnetite: Fe–Ti–(V) oxide-bearing mafic–ultramafic layered intrusions of the Emeishan Large Igneous Province, SW China. Ore Geol Rev 65:853–871CrossRefGoogle Scholar
  73. Lombard AF, Ward-Able NM, Bruce RW (1964) The exploration and main geological features of the copper deposit in carbonatite at Loolekop, Palabora Complex. In: Haughton SH (ed) The geology of some ore deposits in southern Africa 2. Geol Soc S Afr, Johannesburg, pp. 315–337Google Scholar
  74. McCarthy TS, Cawthorn RG (1983) The geochemistry of vanadiferous magnetite in the Bushveld Complex: implications for crystallization mechanisms in layered complexes. Miner Depos 18:505–518CrossRefGoogle Scholar
  75. McCarthy TS, Cawthorn RG, Wright CJ, McIver JR (1985) Mineral layering in the Bushveld Complex: implications of Cr abundances in magnetite from closely spaced magnetite and intervening silicate-rich layers. Econ Geol 80:1062–1074CrossRefGoogle Scholar
  76. Merlet C (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchim Acta 114:363–376CrossRefGoogle Scholar
  77. Mitchell RH, Krouse HR (1975) Sulfur isotope geochemistry of carbonatites. Geochim Cosmochim Acta 39:1505–1515CrossRefGoogle Scholar
  78. Müller B, Axelsson MD, Ohlander B (2003) Trace elements in magnetite from Kiruna, northern Sweden, as determined by LA–ICP-MS. GFF 125:1–5CrossRefGoogle Scholar
  79. Nadoll P, Muak JL, Hayes TS, Koenig AE, Box SE (2012) Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Econ Geol 107:1275–1292CrossRefGoogle Scholar
  80. Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32CrossRefGoogle Scholar
  81. Newberry NG, Peacor DR, Essene EJ, Geissman JW (1982) Silicon in magnetite: high resolution microanalysis of magnetite-ilmenite intergrowths. Contrib Mineral Petrol 80:334–340CrossRefGoogle Scholar
  82. Nykänen J, Laajoki K, Karnu J (1997) Geology and geochemistry of the early Proterozoic Kortejärvi and Laivajoki carbonatites, central Fennoscandian Shield, Finland. Bull Geol Soc Finland 69:5–30Google Scholar
  83. Palabora Mining Company Limited Mine Geological and Mineralogical staff (1976) The geology and the economic deposit of copper, iron, and vermiculite in the Palabora igneous complex: a brief review. Econ Geol 71:177–192CrossRefGoogle Scholar
  84. Palme H, O’Neill HSC (2014) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) Treatise on geochemistry, 2nd edn The mantle and core vol 3.1. Elsevier, Amsterdam, pp. 1–39CrossRefGoogle Scholar
  85. Palmer DAS (1998) The evolution of carbonatite melts and their aqueous fluids: evidence from Amba Dongar, India, and Phalaborwa, South Africa. Montreal, Canada, PhD Thesis, McGill University, p 270Google Scholar
  86. Pang KN, Li CS, Zhou MF, Ripley EM (2008) Abundant Fe–Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions, SW China: evidence for early saturation of Fe–Ti oxides in ferrobasaltic magma. Contrib Mineral Petrol 156:307–321CrossRefGoogle Scholar
  87. Pattrick AD, Van Der Laan G, Henderson CMB, Kuiper P, Dudzik E, Vaughan DJ (2002) Cation site occupancy in spinel ferrites studied by X-ray magnetic circular dichroism: developing a method for mineralogists. Eur J Mineral 14:1095–1102CrossRefGoogle Scholar
  88. Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180:1783–1786CrossRefGoogle Scholar
  89. Razjigaeva N, Naumova V (1992) Trace element composition of detrital magnetite from coastal sediments of northwestern Japan Sea for provenance study. J Sediment Res 62:802–809Google Scholar
  90. Reguir EP, Chakhmouradian AR, Halden MN, Yang P, Zaitsev AN (2008) Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. Can Mineral 46:879–900CrossRefGoogle Scholar
  91. Reischmann T, Brugmann GE, Jochum KP, Todt WA (1995) Trace element and isotopic composition of baddeleyite. Mineral Petrol 53:155–164CrossRefGoogle Scholar
  92. Reynolds IM (1980) Ore petrography and mineralogy of the vanadium-bearing titaniferous magnetite layer of the Kaffirskraal intrusion, Heidelberg district, Transvaal. Trans Geol Soc S Afr 83:221–230Google Scholar
  93. Reynolds IM (1985) The nature and origin of titanomagnetite-rich layers in the upper zone of the Bushveld Complex: a review synthesis. Econ Geol 80:1089–1108CrossRefGoogle Scholar
  94. Ridge JD (1976) Annotated bibliographies of mineral deposits in Africa, Asia, (Exclusive of USSR) and Australasia. Pergamon Press, Oxford, p 545Google Scholar
  95. Ripp GS, Karmanov NS, Doroshkevich AG, Badmatsyrenov MV, Izbrodin IA (2006) Chrome-bearing mineral phases in the carbonatites of northern Transbaikalia. Geochem Int 44:395–402CrossRefGoogle Scholar
  96. Rudashevsky NS, Kretser YuL, Rudashevsky VN, Sukharzhevskaya EA (2004) A review and comparison of PGE, noble-metal and sulphide mineralization in phoscorites and carbonatites from Kovdor and Phalaborwa. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. The Mineralogical Society series 10, pp 375–406Google Scholar
  97. Russell HD, Hiemstra SA, Groeneveld D (1954) The mineralogy and petrology of the carbonatite at Loolekop, eastern Transvaal. Trans Geol Soc S Afr 57:97–208Google Scholar
  98. Sauerzapf U, Lattard D, Burchard M, Engelmann R (2008) The titanomagnetite-ilmenite equilibrium: new experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks. J Petrol 49:1161–1185CrossRefGoogle Scholar
  99. Schreiber HD, Balazs GB (1982) Vanadium as an oxygen geobarometer in basaltic magmas: the further development of a geochemical electromotive force series. Lunar Planet Sci 13:692–693Google Scholar
  100. Sharygin VV, Zithova LM, Nigmatulina EN (2011) Fairchildite K2Ca(CO3)2 in phoscorites from Phalaborwa, South Africa: the first occurrence in alkaline carbonatite complexes. Russian Geol Geoph 52:208–219CrossRefGoogle Scholar
  101. Shcheka SA, Romanenko IM, Chuburov UM, Kurentsova NA (1977) Silica-bearing magnetites. Contrib Mineral Petrol 63:103–111CrossRefGoogle Scholar
  102. Shimazaki H (1998) On the occurrence of silician magnetites. Resour Geol 48:23–29CrossRefGoogle Scholar
  103. Simon AC, Candela PA, Piccoli PM, Mengason M, Englander L (2008) The effect of crystal–melt partitioning on the budgets of Cu, Au, and Ag. Am Mineral 93:1437–1448CrossRefGoogle Scholar
  104. Singoyi B, Danyushevsky L, Davidson GJ, Large R, Zaw K (2006) Determination of trace elements in magnetites from hydrothermal deposits using the LA-ICP-MS technique. Abstracts of Oral and Poster Presentations from the SEG 2006 Conference Society of Economic Geologists, Keystone, USA, pp 267–368Google Scholar
  105. Solovova IP, Ryabchikov ID, Kogarko LN, Kononkova NN (1998) Inclusions in minerals of the Palaborwa Carbonatite Complex, South Africa. Geokhimiya 5:435–447Google Scholar
  106. Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66:1189–1201Google Scholar
  107. Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral–melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170CrossRefGoogle Scholar
  108. Toplis MJ, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–37CrossRefGoogle Scholar
  109. Van Rensburg WCJ (1965) Copper mineralization in the carbonate members and phoscorite, Phalaborwa, South Africa. PhD thesis, University of Winsconsin, Madison, p 242Google Scholar
  110. Veksler IV, Petibon C, Jenner GA, Dorfman AM, Dingwell DB (1998) Trace element partitioning in immiscible silicate-carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J Petrol 39:2095–2104CrossRefGoogle Scholar
  111. Verwoerd WJ (1967) The carbonatites of South Africa and South West Africa. Geological Survey of South Africa handbook 6: Geol Surv, Pretoria, p 452Google Scholar
  112. Verwoerd WJ (1986) Mineral deposits associated with carbonatites and alkaline rocks. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, Geol Soc S Afr 2, pp 2173–2191Google Scholar
  113. Verwoerd WJ, Du Toit MC (2006) The Phalaborwa and Schiel complexes. In: Johnson MR, Anhausser CR, Thomas RJ (eds) The geology of South Africa, Council for Geosciences, pp 291–318Google Scholar
  114. Von Gehlen K (1967) Sulfur isotopes from the sulphide-bearing carbonatite of Palabora, South Africa. Trans Inst Mining Metall, Sect B, Appl Earth Sci 76:223Google Scholar
  115. Von Grünewaldt G, Klemm DD, Henckel J, Dehm RM (1985) Exsolution features in titanomagnetites from massive magnetite layers and their host rocks of the upper zone, eastern Bushveld Complex. Econ Geol 80:1049–1061CrossRefGoogle Scholar
  116. Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335:343–346CrossRefGoogle Scholar
  117. Walraven F (1997) Geochronology of the Rooiberg Group, Transvaal Supergroup, South Africa. Information Circular Economic Geology Research Unit, Witwatersrand University, Johannesburg, South Africa, 316, p 21Google Scholar
  118. Walraven F, Armstrong RA, Kruger FJ (1990) A chronostratigraphic framework for the north-central Kaapvaal Craton, the Bushveld Complex and the Vredefort structure. Tectonophysics 171:23–48CrossRefGoogle Scholar
  119. Wang RC, Yu A-P, Chen J, Xie L, Lu J-J, Zhu J-C (2012) Cassiterite exsolution with ilmenite lamellae in magnetite from the Huashan metaluminous tin granite in southern China. Mineral Petrol 105:71–84CrossRefGoogle Scholar
  120. Wilson MGC (1998) Copper. In: Wilson MGC, Anhaeusser CR (eds) The mineral resources of South Africa, Handbook 16, 6th ed, Pretoria, Council for Geoscience, pp 209–227Google Scholar
  121. Wilson A, Zeh A, Ovtcharova M, Schaltegger U (2015) Age constraints for the Bushveld Complex from high precision zirconology. 7th meeting: ‘Igneous and magmatic Study Group’, University of Pretoria, January 2015, Pretoria, abstract volumeGoogle Scholar
  122. Woolley AR (2001) Alkaline rocks and carbonatites of the world. Part 3. Africa. Geol Soc London, p 341Google Scholar
  123. Wu FJ, Yang YH, Li QL, Mitchell RH, Dawson JB, Brandl G, Yuhara M (2011) In situ determination of U-Pb ages and Sr-Nd-Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite complex. South Africa, Lithos 127:209–327Google Scholar
  124. Wyllie PJ (1967) Experimental studies of carbonatite problems: the origin and differentiation of carbonatite magmas. In: Gittins J (ed) Tuttle OF. Interscience Publishers, Carbonatites, pp. 311–352Google Scholar
  125. Wyllie PJ, Lee WJ (1998) Model system controls on conditions for formation of magnesiocarbonatite and calciocarbonatite magmas from the mantle. J Petrol 39:1885–1893CrossRefGoogle Scholar
  126. Xu H, Shen Z, Konishi H (2014) Si-magnetite nano-precipitates in silician magnetite from banded iron formation: Z-contrast imaging and ab initio study. Am Mineral 99:2196–2202CrossRefGoogle Scholar
  127. Yuhara M, Hirahara Y, Nishi N, Kagami H (2005) Rb–Sr, Sm–Nd ages of the Phalaborwa carbonatite complex, South Africa. Polar Geosci 18:101–113Google Scholar
  128. Zaitsev AN, Bell K (1995) Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola peninsula, Russia. Contrib Mineral Petrol 121:324–335CrossRefGoogle Scholar
  129. Zaitsev AN, Kamenetsky VS, Chakhmouradian AR (2015a) Magnetite-hosted multiphase inclusions in phoscorites and carbonatites of the Kovdor complex, Kola alkaline province In: Kogarko LN (ed) Alkaline magmatism of the earth and related strategic metal deposits—Proceedings of XXXII International Conference, pp 144–145Google Scholar
  130. Zaitsev AN, Williams T, Jeffries CT, Strekopytov E, Moutte S, Ivashchenkova J, Spratt OV, Petrov SV, Wall F, Seltmann R, Borozdin AP (2015b) Reprint of “Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes”. Ore Geol Rev 64:477–498CrossRefGoogle Scholar
  131. Zhao WW, Zhou M-F (2015) In-situ LA-ICP-MS trace elemental analyses of magnetite: the cretaceous Tengtie skarn iron deposit in the Nanling Range, South China. Ore Geol Rev 65:872–883CrossRefGoogle Scholar
  132. Zhou M-F, Chen WT, Wang CY, Prevec SA, Liu Patricia P, Howarth GH (2013) Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China. Geosci Front 4:481–502CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of GeosciencesUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Department of Earth SciencesStellenbosch UniversityMatielandSouth Africa
  3. 3.Department of Earth SciencesUniversity of the Western CapeBellvilleSouth Africa

Personalised recommendations