Advertisement

Mineralium Deposita

, Volume 52, Issue 7, pp 1069–1083 | Cite as

Supergene neoformation of Pt-Ir-Fe-Ni alloys: multistage grains explain nugget formation in Ni-laterites

  • Thomas Aiglsperger
  • Joaquín A. Proenza
  • Mercè Font-Bardia
  • Sandra Baurier-Aymat
  • Salvador Galí
  • John F. Lewis
  • Francisco Longo
Article

Abstract

Ni-laterites from the Dominican Republic host rare but extremely platinum-group element (PGE)-rich chromitites (up to 17.5 ppm) without economic significance. These chromitites occur either included in saprolite (beneath the Mg discontinuity) or as ‘floating chromitites’ within limonite (above the Mg discontinuity). Both chromitite types have similar iridium-group PGE (IPGE)-enriched chondrite normalized patterns; however, chromitites included in limonite show a pronounced positive Pt anomaly. Investigation of heavy mineral concentrates, obtained via hydroseparation techniques, led to the discovery of multistage PGE grains: (i) Os-Ru-Fe-(Ir) grains of porous appearance are overgrown by (ii) Ni-Fe-Ir and Ir-Fe-Ni-(Pt) phases which are overgrown by (iii) Pt-Ir-Fe-Ni mineral phases. Whereas Ir-dominated overgrowths prevail in chromitites from the saprolite, Pt-dominated overgrowths are observed within floating chromitites. The following formation model for multistage PGE grains is discussed: (i) hypogene platinum-group minerals (PGM) (e.g. laurite) are transformed to secondary PGM by desulphurization during serpentinization; (ii) at the stages of serpentinization and/or at the early stages of lateritization, Ir is mobilized and recrystallizes on porous surfaces of secondary PGM (serving as a natural catalyst) and (iii) at the late stages of lateritization, biogenic mediated neoformation (and accumulation) of Pt-Ir-Fe-Ni nanoparticles occurs. The evidence presented in this work demonstrates that in situ growth of Pt-Ir-Fe-Ni alloy nuggets of isometric symmetry is possible within Ni-laterites from the Dominican Republic.

Keywords

Ni-laterite Platinum-group elements Platinum-group minerals Supergene Neoformation Nugget formation Falcondo mining area Dominican Republic 

Notes

Acknowledgments

This research has been financially supported by FEDER Funds, the Spanish projects CGL2009-10924, CGL2012-36263 and CGL2015-65824 and the Catalan project 2014-SGR-1661 as well as by a PhD grant to TA sponsored by the Ministerio de Economia y Competitividad (Spain). The authors gratefully acknowledge the help and hospitality extended by the staff of Falcondo mine (Falcondo Glencore). Excellent technical support during EPMA sessions by Xavier Llovet and during FE-SEM sessions by Eva Prats at the Serveis Científics i Tecnòlogics (University of Barcelona) is highly appreciated. Louis Cabri and Vladimir Rudashevsky are greatly thanked for their help during installation of the HS-11 laboratory in Barcelona. We acknowledge the critical comments of three anonymous reviewers and the help of the editors Prof. Maier and Prof. Lehmann.

References

  1. Ahmed Z, Bevan JC (1981) Awaruite, iridian awaruite and a new Ru-Os-Ir-Ni-Fe alloy from the Sakhakot-Qila complex, Malakand agency, Pakistan. Min Mag 44:225–230CrossRefGoogle Scholar
  2. Aiglsperger T, Proenza JA, Lewis JF, Labrador M, Svojtka M, Rojas-Purón A, Longo F, Ďurišová J (2016) Critical metals (REE, Sc, PGE) in Ni-laterites from Cuba and the Dominican Republic. Ore Geol Rev 73:127–147CrossRefGoogle Scholar
  3. Aiglsperger T, Proenza JA, Zaccarini F, Lewis JF, Garuti G, Labrador M, Longo F (2015) Platinum group minerals (PGM) in the Falcondo Ni-laterite deposit, Loma Caribe peridotite (Dominican Republic). Mineral Deposita 50:105–123CrossRefGoogle Scholar
  4. Augusthitis SS (1965) Mineralogical and geochemical studies of the platiniferous dunite–birbirite–pyroxenite complex of Yubdo, Birbir, W. Ethiopia. Chem Erde 24:159–196Google Scholar
  5. Azaroual M, Romand B, Freyssinet P, Disnar JR (2001) Solubility of platinum in aqueous solutions at 25 °C and pHs 4 to 10 under oxidizing conditions. Geochim Cosmochim Acta 65:4453–4463CrossRefGoogle Scholar
  6. Begizov VD, Borisenko LF, Uskov ED (1975) Sulphides and natural solid solutions of PGE from ultramafic rocks of the Gusevogorsk massif (the Urals). Dokl Acad Sci USSR, Earth Sci Sect 225:134–137Google Scholar
  7. Bowin CO (1966) Geology of the Central Dominican Republic (a case history of part of an island arc). In: Hess, H. (Ed.), Caribbean geological studies. Mem Geol Soc Am 98:11–84CrossRefGoogle Scholar
  8. Bowles JFW (1986) The development of platinum-group minerals in laterites. Econ Geol 81:1278–1285CrossRefGoogle Scholar
  9. Bowles JFW, Gize AP, Vaughan DJ, Norris SJ (1994) Development of platinum-group minerals in laterites-initial comparison of organic and inorganic controls. Transact Instn Min Metall 103:B53–B56Google Scholar
  10. Brugger J, Etschmann B, Grosse C, Plumridge C, Kaminski J, Paterson D, Shar SS, Ta C, Howard DL, de Jonge MD, Ball AS, Reith F (2013) Can biological toxicity drive the contrasting behavior of platinum and gold in surface environments? Chem Geol 343:99–110CrossRefGoogle Scholar
  11. Cabral AR, Beaudoin G, Choquette M, Lehmann B, Polônia JC (2007) Supergene leaching and formation of platinum in alluvium: evidence from Serro, Minas Gerais, Brazil. Miner Petrol 90:141–150CrossRefGoogle Scholar
  12. Cabral AR, Lehmann B, Tupinambá M, Schlosser S, Kwitko-Ribeiro R, De Abreu FR (2009) The platiniferous Au-Pd belt of Minas Gerais, Brazil, and genesis of its botryoidal Pt-Pd aggregates. Econ Geol 104:1265–1276CrossRefGoogle Scholar
  13. Cabral AR, Radtke M, Munnik F, Lehmann B, Reinholz U, Riesemeier H, Tupinambá M, Kwitko-Ribeiro R (2011) Iodine in alluvial platinum-palladium nuggets: evidence for biogenic precious-metal fixation. Chem Geol 281:152–132CrossRefGoogle Scholar
  14. Cabri LJ, Harris DC (1975) Zoning in Os-Ir alloys and the relation of the geological and tectonic environment of the source rocks to the bulk Pt: Pt + Ir + Os ratio for placers. Can Mineral 13:266–274Google Scholar
  15. Campbell SG, Reith F, Etschmann B, Brugger J, Martinez-Criado G, Grodon RA, Southam G (2015) Surface transformations of platinum grains from Fifield, new South Wales, Australia. Am Min 100:1236–1243CrossRefGoogle Scholar
  16. Chan TK, Finch IJ (2001) Determination of platinum-group elements and gold by inductively coupled plasma mass spectrometry. In: Australian platinum conference. Perth, Western Australia, pp 1–9Google Scholar
  17. Chorover J, Kretzschmar R, Garcia-Pichel F, Sparks DL (2007) Soil biogeochemical processes within the critical zone. Elements 3:321–326CrossRefGoogle Scholar
  18. Colombo C, Oated CJ, Monhemius AJ, Plant JA (2008) Complexation of platinum, palladium and rhodium with inorganic ligands in the environment. Geochem Explor Environ Anal 8:91–101CrossRefGoogle Scholar
  19. Escuder-Viruete J, Pérez-Estaún A, Contreras F, Joubert M, Weis D, Ullrich TD, Spadea P (2007) Plume mantle source heterogeneity through time: insights from the Duarte complex, Hispaniola, Northeastern Caribbean. J Geophys Res 112(B04203)Google Scholar
  20. Garuti G, Zaccarini F, Proenza JA, Thalhammer OAR, Angeli N (2012) Platinum-group minerals in chromitites of the Niquelândia layered intrusion (central Goias, Brazil): their magmatic origin and low-temperature reworking during serpentinization and lateritic weathering. Minerals 2:365–384CrossRefGoogle Scholar
  21. González-Jiménez JM, Griffin WL, Gervilla F, Proenza JA, O’Reilly SY, Pearson NJ (2014) Chromitites in ophiolites: how, where, when, why? Part I. Origin and significance of platinum-group minerals. Lithos 189:127–139CrossRefGoogle Scholar
  22. Hattori K, Cabri LJ (1992) Origin of platinum-group-mineral nuggets inferred from an osmium-isotope study. Can Mineral 30:289–301Google Scholar
  23. Johan Z (2002) Alaskan-type complexes and their platinum-group element mineralization. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. Can Inst Min Metall Petrol Spec 54:211–249Google Scholar
  24. Koen GM (1964) Rounded platinoid grains in the Witwatersrand Banket. Trans Geol Soc S Afr 67:139–147Google Scholar
  25. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J of Biotech 128:648–653CrossRefGoogle Scholar
  26. Le L, Tang J, Ryan D, Valix M (2006) Bioleaching nickel laterite ores using multi-metal tolerant Aspergillus foetidus organism. Min Eng 19:1259–1265CrossRefGoogle Scholar
  27. Lewis JF, Draper G, Proenza JA, Espaillat J, Jiménez J (2006) Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean region: a review of their occurrence, composition, origin, emplacement and nickel laterite soils. Geol Acta 4:237–263Google Scholar
  28. McDonald AM, Proenza JA, Zaccarini Z, Rudashevsky NS, Cabri LJ, Stanley CJ, Rudashevsky VN, Melgarejo JC, Lewis JF, Longo F, Bakker RJ (2010) Garutiite, (Ni,Fe,Ir), a new hexagonal polymorph of native Ni from Loma Peguera, Dominican Republic. Eur J Mineral 22:293–304CrossRefGoogle Scholar
  29. Melcher F, Oberthur T, Lodziak J (2005) Modification of detrital platinum-group minerals from the eastern Bushveld complex, South Africa. Can Mineral 43:1711–1734CrossRefGoogle Scholar
  30. Naldrett AJ, Duke JM (1980) Platinum metals in magmatic sulfide ores. Science 208:1417–1428CrossRefGoogle Scholar
  31. Oberthür T, Weiser TW, Gast L (2003) Geochemistry and mineralogy of platinum-group elements at Hartley platinum mine, Zimbabwe. Part 2: supergene redistribution in the oxidized main sulfide zone of the great dyke, and alluvial platinum-group minerals. Mineral Deposita 38:344–355CrossRefGoogle Scholar
  32. Oberthür T, Weiser TW, Melcher F (2014) Alluvial and eluvial platinum-group minerals from the Bushveld complex, South Africa. S Afr J Geol 117:255–274CrossRefGoogle Scholar
  33. Ottemann J, Augustithis SS (1967) Geochemistry and origin of “platinum-nuggets” in lateritic covers from ultrabasic rocks and birbirites of W. Ethiopia. Mineral Deposita 1:269–277CrossRefGoogle Scholar
  34. Proenza JA, Zaccarini F, Lewis JF, Longo F, Garuti G (2007) Chromian spinel composition and the platinum group minerals of the PGE-rich Loma Peguera chromitites, Loma Caribe peridotite, Dominican Republic. Can Mineral 45:631–648CrossRefGoogle Scholar
  35. Redwood S (2014) Gold surge mining is booming in the Dominican Republic as investors follow the gold rush. Min J 24:23–27Google Scholar
  36. Reith F, Zammit CM, Shar SS, Etschmann B, Bottrill R, Southam G, Ta C, Kilburn M, Oberthür T, Ball AS, Brugger J (2016) Biological role in the transformation of platinum-group-mineral grains. Nat Geosci 9:294–298CrossRefGoogle Scholar
  37. Rudashevsky NS, Mochalov AG, Menshikov YP, Shumskaya NI (1983) Ferronickelplatinum, Pt2FeNi, a new mineral species. Zap Vseross Mineral Obshch 112:487–494 (in Russian)Google Scholar
  38. Sharma S, Mandani S, Sarma TK (2013) Biogenic growth of alloys and core-shell nanostructures using urease as a nanoreactor at ambient condition. Sci Rep 3(2601):1–8Google Scholar
  39. Shuster J, Southam G (2014) The in-vitro "growth" of gold grains. Geology 43:79–82CrossRefGoogle Scholar
  40. Stockman HW, Hlava PF (1984) Platinum-group minerals in alpine chromitites from South-Western Oregon. Econ Geol 79:491–508CrossRefGoogle Scholar
  41. Stumpfl EF (1974) The genesis of platinum deposits. Further thoughts. Min Sci Eng 6:120–141Google Scholar
  42. Suárez S, Prichard HM, Velasco F, Fisher PC, McDonald I (2010) Alteration of platinum-group minerals and dispersión of platinum-group elements during progressive weathering of the Aguablanca Ni-Cu deposit, SW Spain. Mineral Deposita 45:331–350CrossRefGoogle Scholar
  43. Talovina IV, Lazarenkov VG (2001) Distribution and genesis of platinum group minerals in nickel ores of the Sakhara and Elizavet deposits in the Urals. Lithol Mineral Res 36:116–122CrossRefGoogle Scholar
  44. Tauler E, Proenza J, Galí S, Lewis J, Labrador M, García-Romero E (2009) Ni-sepiolite-falcondite in garnierite mineralisation from the Falcondo Ni-laterite deposit, Dominican Republic. Clay Miner 44:435–454CrossRefGoogle Scholar
  45. TOPAS (2009) General profile and structure analysis for powder diffraction data, version 4.2. Bruker AXS, GmbH, KarlsruheGoogle Scholar
  46. USGS (2015) Mineral commodity summaries 2015. Available at: http://minerals.usgs.gov/minerals/pubs/commodity/platinum/mcs-2015-plati.pdf. Accessed 19.01.2016
  47. Varajão CAC, Colin F, Vieillard P, Melfi AJ, Nahon D (2000) Early weathering of palladium gold under lateritic conditions, Maquiné mine, Minas Gerais, Brazil. Appl Geochem 15:245–263CrossRefGoogle Scholar
  48. Villanova-de-Benavent C, Proenza JA, Galí S, García-Casco A, Tauler E, Lewis JF, Longo F (2014) Garnierites and garnierites: textures, mineralogy and geochemistry of garnierites in the Falcondo Ni-laterite deposit, Dominican Republic. Ore Geol Rev 58:91–109CrossRefGoogle Scholar
  49. Williams K (1960) An association of awaruite with heazlewoodite. Am Mineral 45:450–453Google Scholar
  50. Zaccarini F, Proenza JA, Rudashevsky NS, Cabri LJ, Garuti G, Rudashevsky VN, Melgarejo JC, Lewis JF, Longo F, Bakker RJ, Stanley CJ (2009) The Loma Peguera ophiolitic chromitite (Central Dominican Republic): a source of new platinum group minerals (PGM) species. N Jb Miner Abh 185(3):335–349CrossRefGoogle Scholar
  51. Zeise WC (1831) I.Von der Wirkung zwischen Platinchlorid und Alkohol, und den dabei entstehenden neuen Substanzen. II. Gekohlenwasserstofftes Chlorplatin-Ammoniak. Annalen der Physik und Chemie (Poggendorff) 21:497–549CrossRefGoogle Scholar
  52. Zhmodik SM, Shevedenkov GY, Verkhovtseva NV (2004) Iridium distribution in hydrothermally synthesized Fe, Cu, Zn, and Pb sulphides. Can Mineral 42:405–4010CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Thomas Aiglsperger
    • 1
  • Joaquín A. Proenza
    • 1
  • Mercè Font-Bardia
    • 1
  • Sandra Baurier-Aymat
    • 1
  • Salvador Galí
    • 1
  • John F. Lewis
    • 2
  • Francisco Longo
    • 3
  1. 1.Departament de Mineralogia, Petrologia i Geologia AplicadaUniversitat de Barcelona (UB)BarcelonaSpain
  2. 2.Department of Earth and Environmental SciencesGeorge Washington UniversityWashingtonUSA
  3. 3.Faculty of EngineeringUniversidad Católica Tecnológica del Cibao (UCATECI)La VegaDominican Republic

Personalised recommendations