Skip to main content
Log in

Natural fracking and the genesis of five-element veins

  • Letter
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Hydrothermal Ag-Co-Ni-Bi-As (five-element vein type) ore deposits show very conspicuous textures of the native elements silver, bismuth, and arsenic indicating formation from a rapid, far-from-equilibrium process. Such textures include up to dm-large tree- and wire-like aggregates overgrown by Co-Ni-Fe arsenides and mostly carbonates. Despite the historical and contemporary importance of five-element vein type deposits as sources of silver, bismuth, and cobalt, and despite of spectacular museum specimens, their process of formation is not yet understood and has been a matter of debate since centuries. We propose, based on observations from a number of classical European five-element vein deposits and carbon isotope analyses, that “natural fracking,” i.e., liberation of hydrocarbons or hydrocarbon-bearing fluids during break up of rocks in the vicinity of an active hydrothermal system and mixing between these hydrocarbons (e.g., methane and/or methane-bearing fluids) and a metal-rich hydrothermal fluid is responsible for ore precipitation and the formation of the unusual ore textures and assemblages. Thermodynamic and isotope mixing calculations show that the textural, chemical, and isotopic features of the investigated deposits can entirely be explained by this mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmed AH, Arai S, Ikenne M (2009) Mineralogy and paragenesis of the Co-Ni arsenide ores of Bou Azzer, Anti-Atlas, Morocco. Econ Geol 104:249–266

    Article  Google Scholar 

  • Andrews AJ, Owsiacki L, Kerrich R, Strong DF (1986) The silver deposits at Cobalt and Gowganda, Ontario. I: geology, petrography, and whole-rock geochemistry. Can J Earth Sci 23:1480–1506

    Article  Google Scholar 

  • Apps JA (1985) Methane formation during hydrolysis by mafic rocks. Lawrence Berkeley Lab Univ Calif Berkeley Ann Rep 1984:13–17

    Google Scholar 

  • Bastin ES (1950) Significant replacement textures at Cobalt and South Lorraine, Ontario, Canada. Econ Geol 45:808–817

    Article  Google Scholar 

  • Clavel M (1963) Contribution à l’étude métallogénique de la région d’Allemont, Massif de Belledonne-Isère. Thesis, Université de Nancy, 187 p

  • Cox SF, Wall VJ, Etheridge MA, Potter TF (1991) Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits—examples from the Lachlan Fold Belt in central Victoria, Australia. Ore Geol Rev 6:391–423

    Article  Google Scholar 

  • En-Naciri A, Barbanson L, Touray J (1997) Brine inclusions from the Co-As(Au) Bou Azzer district, Anti-Atlas Mountains, Morocco. Econ Geol 92:360–367

    Article  Google Scholar 

  • Etiope G, Sherwood Lollar B (2013) Abiotic methane on Earth. Rev Geophys 51:276–299

    Article  Google Scholar 

  • Fettel M (1978) Über die Wismut-Kobalt-Nickel-Silber-Uran-Formation im kristallinen Odenwald. Aufschluss 29:307–320

    Google Scholar 

  • Gammon JB (1966) Fahlbands in the Precambrian of Southern Norway. Econ Geol 61:174–185

    Article  Google Scholar 

  • Goldfarb RJ, Baker T, Dubé B, Groves DI, Hart CJR, Gosselin P (2005) Distribution, character, and genesis of gold deposits in metamorphic terranes. Econ Geol 100th Anniv 407–450

  • Holzman DC (2011) Methane found in well water near fracking sites. Environ Health Perspect 119(7):a289

    Article  Google Scholar 

  • Keil K (1933) Über die Ursachen der charakteristischen Paragenesenbildung von gediegen Silber und gediegen Wismut mit den Kobalt-Nickel-Eisen-Arseniden auf den Gängen der Kobalt-Nickel-Wismut-Silber-Erzformation im sächsisch-böhmischen Erzgebirge und dem Cobalt-District. N Jb Min Geol Paläont 66:407–424

    Google Scholar 

  • Kerrich R, Strong D, Andrews A, Owsiacki L (1986) The silver deposits at Cobalt and Gowganda, Ontario. III: hydrothermal regimes and source reservoirs—evidence from H, O, C, and Sr isotopes and fluid inclusions. Can J Earth Sci 23:1519–1550

    Article  Google Scholar 

  • Kissin SA (1992) Five-element (Ni-Co-As-Ag-Bi) veins. In: Sheahan PA, Cherry ME (eds) Ore deposit models. Geosci Can 19:113–124

  • Lietz J (1939) Mikroskopische und chemische Untersuchungen an Kongsberger Silbererzen. Z Angew Mineral 2:65–113

    Google Scholar 

  • Lipp U (2003) Wismut-, Kobalt-, Nickel- und Silbererze im Nordteil des Schneeberger Lagerstättenbezirkes. Bergbau in Sachsen 10:1–210

    Google Scholar 

  • Lüders V, Plessen B, di Primio R (2012) Stable carbon isotopic ratios of CH4–CO2-bearing fluid inclusions in fracture-fill mineralization from the Lower Saxony Basin, Germany—a tool for tracing gas sources and maturity. Mar Pet Geol 30:174–183

    Article  Google Scholar 

  • Marshall D (2008) Economic geology models 2. Melt inclusions of native silver and native bismuth: a re-examination of possible mechanisms for metal enrichment in five-element deposits. Geosci Can 35:137–145

    Google Scholar 

  • Marshall DD, Diamond LW, Skippen GB (1993) Silver transport and deposition at Cobalt, Ontario, Canada; fluid inclusion evidence. Econ Geol 88:837–854

    Article  Google Scholar 

  • Meisser N (2003) Le district cobalto-nickélifère d’Anniviers - Tourtemagne, Valais, Suisse. Min Helv 23b:57–64

    Google Scholar 

  • Misra KC, Fleet ME (1975) Textural and compositional variations in a Ni-Co-As assemblage. Can Min 13:8–14

    Google Scholar 

  • Möller P, Woith H, Dulski P, Lüders V, Erzinger J, Kämpf H, Pekdeger A, Hansen B, Lodemann M, Banks D (2005) Main and trace elements in KTB-VB fluid: composition and hints to its origin. Geofluids 5:28–41

    Article  Google Scholar 

  • Naden J, Shepherd TJ (1989) Role of methane and carbon dioxide in gold deposition. Nature 342:793–795

    Article  Google Scholar 

  • Neumann H (1944) Silver deposits at Kongsberg. Nor Geol Unders 162:1–133

    Google Scholar 

  • Ondrus P, Veselovsky F, Gabasová A, Drábek M, Dobes P, Maly K, Hlousek J, Sejkora J (2003) Ore-forming processes and mineral parageneses of the Jáchymov ore district. J Czech Geol Soc 48:157–192

    Google Scholar 

  • Petruk W (1968) Mineralogy and origin of the Silverfields silver deposit in the Cobalt area, Ontario. Econ Geol 63:512–531

    Article  Google Scholar 

  • Ramdohr P (1975) Der Silberkobalterzgang mit Kupfererzen vom Wingertsberg bei Nieder-Ramstadt im Odenwald. Aufschluss Sb 27:237–243

    Google Scholar 

  • Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71:1–10

    Article  Google Scholar 

  • Sibson RH (1996) Structural permeability of fluid-driven fault-fracture meshes. J Struct Geol 18:1031–1042

    Article  Google Scholar 

  • Staude S, Wagner T, Markl G (2007) Mineralogy, mineral compositions and fluid evolution at the Wenzel hydrothermal deposit, Southern Germany: implications for the formation of Kongsberg-type silver deposits. Can Min 45:1147–1176

    Article  Google Scholar 

  • Staude S, Werner W, Mordhorst T, Wemmer K, Jacob DE, Markl G (2012) Multi-stage Ag–Bi–Co–Ni–U and Cu–Bi vein mineralization at Wittichen, Schwarzwald, SW Germany: geological setting, ore mineralogy, and fluid evolution. Mineral Deposita 47:251–276

    Article  Google Scholar 

  • Wagner T, Lorenz J (2002) Mineralogy of complex Co–Ni–Bi vein mineralization, Bieber deposit, Spessart, Germany. Min Mag 66:385–407

    Article  Google Scholar 

  • Welhan JA (1988) Origins of methane in hydrothermal systems. Chem Geol 71:183–198

    Article  Google Scholar 

  • Wilde A, Layer P, Mernagh T, Foster J (2001) The giant Muruntau gold deposit: geologic, geochronologic, and fluid inclusion constraints on ore genesis. Econ Geol 96:633–644

    Article  Google Scholar 

  • Wilke A (1952) Die Erzgänge von St. Andreasberg im Rahmen des Mittelharz-Ganggebietes. Geol Jb 147

  • Wilkerson G, Deng QP, Llavona R, Goodell P (1988) The Batopilas mining district, Chihuahua, Mexico. Econ Geol 83:1721–1736

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Peter Kolesar and Bernd Lehmann for their insightful discussions on this subject, to Michael Fettel for samples from the Odenwald deposits, to Michael Marks for help with the graphics, to Wolfgang Gerber and Matthias Reinhardt for the mineral photographs, and to Daniel Kontak and an anonymous reviewer of an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Markl.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markl, G., Burisch, M. & Neumann, U. Natural fracking and the genesis of five-element veins. Miner Deposita 51, 703–712 (2016). https://doi.org/10.1007/s00126-016-0662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-016-0662-z

Keywords