Abstract
Hydrothermal Ag-Co-Ni-Bi-As (five-element vein type) ore deposits show very conspicuous textures of the native elements silver, bismuth, and arsenic indicating formation from a rapid, far-from-equilibrium process. Such textures include up to dm-large tree- and wire-like aggregates overgrown by Co-Ni-Fe arsenides and mostly carbonates. Despite the historical and contemporary importance of five-element vein type deposits as sources of silver, bismuth, and cobalt, and despite of spectacular museum specimens, their process of formation is not yet understood and has been a matter of debate since centuries. We propose, based on observations from a number of classical European five-element vein deposits and carbon isotope analyses, that “natural fracking,” i.e., liberation of hydrocarbons or hydrocarbon-bearing fluids during break up of rocks in the vicinity of an active hydrothermal system and mixing between these hydrocarbons (e.g., methane and/or methane-bearing fluids) and a metal-rich hydrothermal fluid is responsible for ore precipitation and the formation of the unusual ore textures and assemblages. Thermodynamic and isotope mixing calculations show that the textural, chemical, and isotopic features of the investigated deposits can entirely be explained by this mechanism.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ahmed AH, Arai S, Ikenne M (2009) Mineralogy and paragenesis of the Co-Ni arsenide ores of Bou Azzer, Anti-Atlas, Morocco. Econ Geol 104:249–266
Andrews AJ, Owsiacki L, Kerrich R, Strong DF (1986) The silver deposits at Cobalt and Gowganda, Ontario. I: geology, petrography, and whole-rock geochemistry. Can J Earth Sci 23:1480–1506
Apps JA (1985) Methane formation during hydrolysis by mafic rocks. Lawrence Berkeley Lab Univ Calif Berkeley Ann Rep 1984:13–17
Bastin ES (1950) Significant replacement textures at Cobalt and South Lorraine, Ontario, Canada. Econ Geol 45:808–817
Clavel M (1963) Contribution à l’étude métallogénique de la région d’Allemont, Massif de Belledonne-Isère. Thesis, Université de Nancy, 187 p
Cox SF, Wall VJ, Etheridge MA, Potter TF (1991) Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits—examples from the Lachlan Fold Belt in central Victoria, Australia. Ore Geol Rev 6:391–423
En-Naciri A, Barbanson L, Touray J (1997) Brine inclusions from the Co-As(Au) Bou Azzer district, Anti-Atlas Mountains, Morocco. Econ Geol 92:360–367
Etiope G, Sherwood Lollar B (2013) Abiotic methane on Earth. Rev Geophys 51:276–299
Fettel M (1978) Über die Wismut-Kobalt-Nickel-Silber-Uran-Formation im kristallinen Odenwald. Aufschluss 29:307–320
Gammon JB (1966) Fahlbands in the Precambrian of Southern Norway. Econ Geol 61:174–185
Goldfarb RJ, Baker T, Dubé B, Groves DI, Hart CJR, Gosselin P (2005) Distribution, character, and genesis of gold deposits in metamorphic terranes. Econ Geol 100th Anniv 407–450
Holzman DC (2011) Methane found in well water near fracking sites. Environ Health Perspect 119(7):a289
Keil K (1933) Über die Ursachen der charakteristischen Paragenesenbildung von gediegen Silber und gediegen Wismut mit den Kobalt-Nickel-Eisen-Arseniden auf den Gängen der Kobalt-Nickel-Wismut-Silber-Erzformation im sächsisch-böhmischen Erzgebirge und dem Cobalt-District. N Jb Min Geol Paläont 66:407–424
Kerrich R, Strong D, Andrews A, Owsiacki L (1986) The silver deposits at Cobalt and Gowganda, Ontario. III: hydrothermal regimes and source reservoirs—evidence from H, O, C, and Sr isotopes and fluid inclusions. Can J Earth Sci 23:1519–1550
Kissin SA (1992) Five-element (Ni-Co-As-Ag-Bi) veins. In: Sheahan PA, Cherry ME (eds) Ore deposit models. Geosci Can 19:113–124
Lietz J (1939) Mikroskopische und chemische Untersuchungen an Kongsberger Silbererzen. Z Angew Mineral 2:65–113
Lipp U (2003) Wismut-, Kobalt-, Nickel- und Silbererze im Nordteil des Schneeberger Lagerstättenbezirkes. Bergbau in Sachsen 10:1–210
Lüders V, Plessen B, di Primio R (2012) Stable carbon isotopic ratios of CH4–CO2-bearing fluid inclusions in fracture-fill mineralization from the Lower Saxony Basin, Germany—a tool for tracing gas sources and maturity. Mar Pet Geol 30:174–183
Marshall D (2008) Economic geology models 2. Melt inclusions of native silver and native bismuth: a re-examination of possible mechanisms for metal enrichment in five-element deposits. Geosci Can 35:137–145
Marshall DD, Diamond LW, Skippen GB (1993) Silver transport and deposition at Cobalt, Ontario, Canada; fluid inclusion evidence. Econ Geol 88:837–854
Meisser N (2003) Le district cobalto-nickélifère d’Anniviers - Tourtemagne, Valais, Suisse. Min Helv 23b:57–64
Misra KC, Fleet ME (1975) Textural and compositional variations in a Ni-Co-As assemblage. Can Min 13:8–14
Möller P, Woith H, Dulski P, Lüders V, Erzinger J, Kämpf H, Pekdeger A, Hansen B, Lodemann M, Banks D (2005) Main and trace elements in KTB-VB fluid: composition and hints to its origin. Geofluids 5:28–41
Naden J, Shepherd TJ (1989) Role of methane and carbon dioxide in gold deposition. Nature 342:793–795
Neumann H (1944) Silver deposits at Kongsberg. Nor Geol Unders 162:1–133
Ondrus P, Veselovsky F, Gabasová A, Drábek M, Dobes P, Maly K, Hlousek J, Sejkora J (2003) Ore-forming processes and mineral parageneses of the Jáchymov ore district. J Czech Geol Soc 48:157–192
Petruk W (1968) Mineralogy and origin of the Silverfields silver deposit in the Cobalt area, Ontario. Econ Geol 63:512–531
Ramdohr P (1975) Der Silberkobalterzgang mit Kupfererzen vom Wingertsberg bei Nieder-Ramstadt im Odenwald. Aufschluss Sb 27:237–243
Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71:1–10
Sibson RH (1996) Structural permeability of fluid-driven fault-fracture meshes. J Struct Geol 18:1031–1042
Staude S, Wagner T, Markl G (2007) Mineralogy, mineral compositions and fluid evolution at the Wenzel hydrothermal deposit, Southern Germany: implications for the formation of Kongsberg-type silver deposits. Can Min 45:1147–1176
Staude S, Werner W, Mordhorst T, Wemmer K, Jacob DE, Markl G (2012) Multi-stage Ag–Bi–Co–Ni–U and Cu–Bi vein mineralization at Wittichen, Schwarzwald, SW Germany: geological setting, ore mineralogy, and fluid evolution. Mineral Deposita 47:251–276
Wagner T, Lorenz J (2002) Mineralogy of complex Co–Ni–Bi vein mineralization, Bieber deposit, Spessart, Germany. Min Mag 66:385–407
Welhan JA (1988) Origins of methane in hydrothermal systems. Chem Geol 71:183–198
Wilde A, Layer P, Mernagh T, Foster J (2001) The giant Muruntau gold deposit: geologic, geochronologic, and fluid inclusion constraints on ore genesis. Econ Geol 96:633–644
Wilke A (1952) Die Erzgänge von St. Andreasberg im Rahmen des Mittelharz-Ganggebietes. Geol Jb 147
Wilkerson G, Deng QP, Llavona R, Goodell P (1988) The Batopilas mining district, Chihuahua, Mexico. Econ Geol 83:1721–1736
Acknowledgments
We are grateful to Peter Kolesar and Bernd Lehmann for their insightful discussions on this subject, to Michael Fettel for samples from the Odenwald deposits, to Michael Marks for help with the graphics, to Wolfgang Gerber and Matthias Reinhardt for the mineral photographs, and to Daniel Kontak and an anonymous reviewer of an earlier draft of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editorial handling: B. Lehmann
Rights and permissions
About this article
Cite this article
Markl, G., Burisch, M. & Neumann, U. Natural fracking and the genesis of five-element veins. Miner Deposita 51, 703–712 (2016). https://doi.org/10.1007/s00126-016-0662-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00126-016-0662-z


