Skip to main content

The high-grade Las Cruces copper deposit, Spain: a product of secondary enrichment in an evolving basin

Abstract

The Las Cruces deposit (Iberian Pyrite Belt) includes a large, high-grade cementation zone capped by unusual rocks that contain carbonates, galena, iron sulphides, and quartz. Between the Late Cretaceous(?) and Tortonian, the volcanogenic massive sulphides were exhumed and affected by subaerial oxidation that formed paired cementation and gossan zones. Onset of Alpine extension produced accelerated growth of the cementation zone along extensional faults, leading to formation of the high-grade copper ore at ca. 11 Ma. Later, replacement of the overlying gossan by sulphide- and carbonate-rich rocks beneath sealing marl sediments is thought to have involved microbial processes, occurring between the Messinian (ca. 7.2 Ma) and today. Isotope data show that the cementation zone formed by the mixing of descending acidic waters derived from oxidation of the massive sulphides, with upwelling geothermal waters flowing at temperatures above 100 °C. The C, O, and Sr isotope values of the mineralization (87Sr/86Sr 0.7101–0.7104) and of the local groundwater (0.7102–0.7104) reflect equilibration with basement rocks, and indicate that influence on the ore-forming process by marl-equilibrated water (0.7091–0.7093) or Miocene seawater (0.7086–0.7092) was negligible. The high sulphur isotope values of the sulphides in the biogenic zone (most +19 to +24 ‰) are well above those of the primary sulphides (δ34S ca. −6.8 to +10.3 ‰) and likely reflect formation of the biogenic sulphides by reduction of aqueous sulphate in the groundwaters. Sulphur isotope values of the cementation zone (δ34S ca. −2.4 to +21.7 ‰) are also consistent with some contribution of sulphur from the biogenic reduction of aqueous sulphate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  • Ague JJ, Brimhall GH (1989) Geochemical modeling of steady state fluid flow and chemical reaction during supergene enrichment of porphyry copper deposits. Econ Geol 84:506–528

    Article  Google Scholar 

  • Al-Aasm IS, Taylor BE, South B (1990) Stable isotope analysis of multiple carbonate samples using selective acid extraction. Chem Geol 90:119–125

    Google Scholar 

  • Albert JF (1979) El mapa español de flujos caloríficos. Intento de correlación entre anomalías geotérmicas y estructura cortical. Bol Geol Min 90:36–48

    Google Scholar 

  • Almodovar GR, Castro JA, Sobol F, Toscano M (1997) Geology of the Rio Tinto ore deposits Geology and VMS deposits of the Iberian Pyrite Belt. SEG Fieldbook Series 27: pp 165-172

  • Almodovar GR, Saez R, Pons JM, Maestre A, Toscano M, Pascual E (1998) Geology and genesis of the Aznalcollar massive sulphide deposits, Iberian Pyrite Belt, Spain. Mineral Deposita 33:111–136

    Google Scholar 

  • Alpers CH, Brimhall GE (1989) Paleohydrologic evolution and geochemical dynamics of cumulative supergene metal enrichment at La Escondida, Atacama Desert, Northern Chile. Econ Geol 84:229–255

    Article  Google Scholar 

  • Alvaro A (2010) Mineralogía y geoquímica de sulfatos secundarios en ambientes de drenaje ácido de mina. Área minera del yacimiento de San Miguel (Faja Pirítica Ibérica). PhD Thesis, Universidad Pais Vasco, pp 273

  • Anderson JA (1982) Characteristics of leached capping and techniques of appraisal. In: Advances in the geology of porphyry copper deposits; southwestern North America. University Arizona Press, Tucson, pp 275–295

    Google Scholar 

  • Arribas A (1995) Characteristics of high-sulfidation epithermal deposits and their relation to magmatic fluid. Min Assoc Can Short Course 23:419–454

    Google Scholar 

  • Barrie CT, Amelin Y, Pascual E (2002) U-Pb geochronology of VMS mineralization in the Iberian Pyrite Belt. Mineral Deposita 37:684–703

    Article  Google Scholar 

  • Barriga FJAS (1990) Metallogenesis in the Iberian Pyrite Belt. In: Dallmeyer RD, Martinez Garcia E (eds) Pre-Mesozoic geology of Iberia. Springer Verlag, Heidelberg, pp 369–379

    Chapter  Google Scholar 

  • Barton PB, Skinner BJ (1979) Sulfide mineral stabilities. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 278–240

    Google Scholar 

  • Baumgartner R, Fontboté L, Vennemann T (2008) Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Econ Geol 103:493–537

    Article  Google Scholar 

  • Bawden TM, Einaudi MT, Bostick BC, Meibom A, Wooden J, Norby JW, Orobona MJT, Chamberlain CP (2003) Extreme S-34 depletions in ZnS at the Mike gold deposit, Carlin Trend, Nevada: evidence for bacteriogenic supergene sphalerite. Geology 31:913–916

    Article  Google Scholar 

  • Belogub EV, Novoselov CA, Spiro B, Yakovleva BA (2003) Mineralogical and S isotopic features of the supergene profile of the Zapadno-Ozernoe massive sulphide and Au-bearing gossan deposit, South Urals. Mineral Mag 67:339–354

    Article  Google Scholar 

  • Belogub EV, Novoselov KA, Yakovleva VA, Spiro B (2008) Supergene sulphides and related minerals in the supergene profiles of VHMS deposits from the South Urals. Ore Geol Rev 33:239–254

    Article  Google Scholar 

  • Bendezú R, Fontboté L (2009) Cordilleran epithermal Cu-Zn-Pb-(Au-Ag) mineralization in the Colquijirca District, Central Peru: deposit-scale mineralogical patterns. Econ Geol 104:905–944

    Article  Google Scholar 

  • Bethke CM (2008) Geochemical and biogeochemical modeling. Cambridge University Press, 543 p

  • Blake C (2008) The mineralogical characterisation and interpretation of a precious metal-bearing fossil gossan, Las Cruces, Spain. Ph D Thesis, Cardiff University, pp 207

  • Boyle DR (2003) Preglacial weathering of massive sulfide deposits in the Bathurst Mining Camp: economic geology, geochemistry, and exploration applications In: Goodfellow WD, McCutcheon SR, Peter JM (eds) Massive sulphide deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine. Soc Explor Geophys, Geophys Monogr 11: 689–721

  • Braxton DP, Cooke DR, Ignacio AM, Rye RO, Waters PJ (2009) Ultra-deep oxidation and exotic copper formation at the Late Pliocene Boyongan and Bayugo porphyry copper-gold deposits, Surigao, Philippines: geology, mineralogy, paleoaltimetry, and their Implications for geologic, physiographic, and tectonic controls. Econ Geol 104:333–349

    Article  Google Scholar 

  • Brimhall GH, Alpers CN, Cunningham AR (1985) Analysis of supergene ore forming processes and groudwater solute transport using mass balance principles. Econ Geol 80:1227–1256

    Article  Google Scholar 

  • Brunner B, Bernasconi SM (2005) A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochim Cosmochim Acta 69:4759–4771

    Article  Google Scholar 

  • Capitán MA (2006) Mineralogía y geoquímica de la alteración superficial de depósitos de sulfuros masivos en la Faja Pirítica Ibérica. PhD Thesis, Universidad de Huelva, 360 p.

  • Capitán MA, Nieto JM, Saez R, Almodovar GR (2004) Mineralogía del gossan del yacimiento de Las Cruces (Sevilla). Macla 2:21–22

  • Carothers WW, Adami LH, Rosenbauer RJ (1988) Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite. Geochim Cosmochim Acta 52:2445–2450

    Article  Google Scholar 

  • Carvalho D, Barriga FJAS, Munha J (1999) Bimodal siliciclastic systems—the case of the Iberian Pyrite Belt. Rev Econ Geol 8:375–408

    Google Scholar 

  • Chipera SJ, Apps JA (2001) Geochemical stability of natural zeolites. Rev Mineral Geochem 45:117–161

    Article  Google Scholar 

  • Civis J, Sierro FJ, González-Delgado JA, Flores JA, Andrés I, Porta J, Valle MF (1987) El Neógeno marino de la provincia de Huelva, antecedentes y definición de las unidades litoestratigráficas. In: Paleontología del Neógeno de Huelva (W del Guadalquivir). Ediciones Universidad de Salamanca. pp 9–27

  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260

    Article  Google Scholar 

  • Claypool GE, Threlkeld C, Mankiewicz P, Arthur M, Anderson TF (1985) Isotopic composition of interstitial fluids and origin of methane in slope sediment of the Middle America trench, Deep-Sea Drilling Project Leg-84. Initial Rep Deep Sea Drill Proj 84:683–691

    Google Scholar 

  • Conde C, Tornos F, Fernandez J, Doyle M (2003) Encuadre estratigráfico de los sulfuros masivos de la parte Suroriental de la Faja Piritica: Aznalcollar-Los Frailes y Las Cruces. Bol Sociedad Española Mineralogía 26-A:161–162

    Google Scholar 

  • Conde C, Tornos F, Doyle M et al (2007) Geology and lithogeochemistry of the unique Las Cruces VMS deposit, Iberian Pyrite Belt. In: Andrew CJ (ed) Digging deeper. Proceedings of the 9th Biennial SGA Meeting IAEG, Dublin, pp 1101–1104

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1966) Rock forming minerals. Longman Press, London

    Google Scholar 

  • Detmers J, Brüchert V, Habicht KS, Kuever J (2001) Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl Environ Microbiol 67:888–894

    Article  Google Scholar 

  • Diez Ercilla M, López Pamo E, Sánchez España J (2009) Photoreduction of Fe(III) in the acidic mine pit lake of San Telmo (Iberian Pyrite Belt): field and experimental work. Aquat Geochem 15:391–419

    Article  Google Scholar 

  • Donald R, Southam G (1999) Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite. Geochim Cosmochim Acta 63:2019–2023

    Article  Google Scholar 

  • Doyle M (1996) Las Cruces copper proyect, Pyrite Belt, Spain. Bol Geol Min 107:681–683

    Google Scholar 

  • Doyle M, Morrissey C, Sharp G (2003) The Las Cruces Orebody, Seville province, Andalucía, Spain. In: Kelly CG, Andrew CJ, Ashton JH, Boland MB, Earls G, Fusciardi L, Stanley G (eds) The geology and genesis of Europe’s major base metal deposits. Irish Association for Economic Geology, Dublin, pp 381–390

    Google Scholar 

  • Duggen S, Hoernle K, van den Bogaard P, Garbe-Schönberg D (2005) Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. J Petrol 46:1155–1201

    Article  Google Scholar 

  • Emmons WH (1918) The principles of economic geology. McGraw-Hill Book Company

  • Epstein S, Mayeda TK (1953) Variation of the 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Fallick AE, Ashton JH, Boyce AJ, Ellam RM, Russell MJ (2001) Bacteria were responsible for the magnitude of the world class hydrothermal base metal sulfide orebody at Navan, Ireland. Econ Geol 96:885–890

    Google Scholar 

  • Fernández M, Berástegui X, Puig C, García-Castellanos D, Jurado MJ, Torné M, Banks C (1998) Geophysical and geological constraints on the evolution of the Guadalquivir foreland basin, Spain. Geol Soc Lond Spec Publ 134:29–48

    Article  Google Scholar 

  • Foley NK, Flohr MJK (1998) Ancient gossan formation at the Bald Mountain VMS deposit, Maine: a natural analogue of the modern oxidation of tailing piles? GSA Meeting. Abstr with programs 29: A166

  • Fortin D, Beveridge T (1997) Microbial sulfate reduction within sulfidic mine tailings: formation of diagenetic Fe sulfides. Geomicrobiol J 14:1–21

    Article  Google Scholar 

  • Friedman I, O’Neil JR (1977) Data of Geochemistry. Compilation of stable isotope fractionation factors of geochemical interest USGS Professional Paper 440-KK, 12 pp

  • Furukawa Y, Barnes HL (1996) Reactions forming smythite, Fe9S11. Geochim Cosmochim Acta 60:3581–3591

    Article  Google Scholar 

  • Galán E, González L, Mayoral E, Muñiz F (1995) Contribution of clay mineralogy to the paleoenvironmental interpretation of upper miocene detrital sediments. Southwestern of the Iberian Peninsula In: Elsen P, Grobet M, Keung H, Leeman R, Schoonheydt R, Toufar H (eds) Euroclay’95. Leuveil, pp 311–312

  • Galindo C, Pankhurst RJ, Casquet C, Coniglio J, Baldo E, Rapela CW, Saavedra J (1997) Age, Sr- and Nd-isotope systematics and origin of two fluorite lodes, Sierras Pampeanas, Argentina. Int Geol Rev 39:948–954

    Article  Google Scholar 

  • Gaspar OC (2002) Mineralogy and sulfide mineral chemistry of the Neves Corvo ores, Portugal: insight into their genesis. Can Min 40:611–636

    Article  Google Scholar 

  • Goldhaber MB, Kaplan IR (1974) The sulfur cycle. In: Goldberg ED (ed) The sea. Wiley, New York, pp 569–655

    Google Scholar 

  • Goldhaber MB, Kaplan IR (1980) Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California. Mar Chem 9:95–143

    Article  Google Scholar 

  • Gonzalez F, Moreno C, Saez R, Clayton J (2002) Ore genesis age of the Tharsis Mining District (Iberian Pyrite Belt): a palynological approach. J Geol Soc Lond 159:229–232

    Article  Google Scholar 

  • Grenne T, Slack JF (2003) Bedded jaspers of the Ordovician Løkken ophiolite, Norway: seafloor deposition and diagenetic maturation of hydrothermal plume-derived silica-iron gels. Mineral Deposita 38:625–639

    Article  Google Scholar 

  • Habicht KS, Canfield DE (2001) Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology 29:555–558

    Article  Google Scholar 

  • Hedenquist JW, Simmons SF, Giggenbach WF, Eldridge CW (1993) White Island, New Zealand, volcanic-hydrothermal system represents the geochemical environment of high sulfidation Cu and Au ore deposition. Geology 21:731–734

    Article  Google Scholar 

  • Henley RW, Truesdell AH, Barton PB, Whitney JA (1984) Fluid-mineral equilibria in hydrothermal systems. Rev Econ Geol 2; 267 p

  • Heyl AV (1964) Enargite in zinc-lead deposits of Upper Mississippi Valley district. Am Mineral 49:1458

    Google Scholar 

  • Hoek J, Reysenbach A, Habicht K, Canfield DE (2004) The effect of temperature and hydrogen limited growth on the fractionation of sulfur isotopes by Thermodesulfatator indicus, a deep-sea hydrothermal vent sulfate-reducing bacterium. Trans AGU 85:B21A–0857

    Google Scholar 

  • Hornibrook ER, Longstaffe FJ, Fyfe WS (2000) Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim Cosmochim Acta 64:1013–1027

    Article  Google Scholar 

  • Hunger S, Benning LG (2007) Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochem Trans 8:1

    Article  Google Scholar 

  • IAEA (2015) WISER: Water Isotope System for Data Analysis, Visualization and Electronic Retrieval. http://www.naweb.iaea.org/napc/ih/IHS_resources_isohis.html. Accessed Feb 2015

  • IGME (1983) Hidrogeología del Parque Nacional de Doñana y su entorno. Instituto Geológico y Minero de España, Madrid, 120 p

    Google Scholar 

  • IGME (2010) Mapa Geológico de España E: 1/200000 Sevilla-Puebla de Guzman (75-74)

  • Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213

    Article  Google Scholar 

  • Johnson CA, Emsbo P, Poole FG, Rye RO (2009) Sulfur- and oxygen-isotopes in sediment-hosted stratiform barite deposits. Geochim Cosmochim Acta 73:133–147

    Article  Google Scholar 

  • Kleikemper MH, Schroth SM, Bernasconi B, Brunner R, Zeyer J (2004) Sulfur isotope fractionation during growth of sulfate reducing bacteria on various carbon sources. Geochim Cosmochim Acta 23:4891–4904

    Article  Google Scholar 

  • Knight FC (2000) The mineralogy, geochemistry and genesis of the secondary sulphide mineralisation of the Las Cruces, Spain. PhD Thesis, University of Cardiff, pp 434

  • Knight FC, Rickard D, Boyce AJ (1999) Multigenic origin for secondary enrichment in Las Cruces VMS deposit, Iberian Pyrite Belt In: Stanley et al. (eds) Mineral deposits: Processes to Processing. Balkema, pp 543-546

  • Kojima S, Trista-Aguilera D, Hayashi K (2009) Genetic aspects of the manto-type copper deposits based on geochemical studies of North Chilean deposits. Resour Geol 59:87–98

    Article  Google Scholar 

  • Kosakevitch A, Palomero F, Leca X, Leistel J, Lenotre N, Sobol F (1993) Climatic and geomorphological controls on the gold concentrations of the Rio-Tinto gossans (Huelva province, Spain). CR Academie Sciences Serie II 316:85-90

  • Kucha H, Viaene W (1993) Compounds with mixed and intermediate sulfur valences as precursors of banded sulfides in carbonate-hosted Zn-Pb deposits in Belgium and Poland. Mineral Deposita 28:13–21

    Article  Google Scholar 

  • Kucha H, Schroll E, Stumpfl EF (2005) Fossil sulphate-reducing bacteria in the Bleiberg lead-zinc deposit, Austria. Mineral Deposita 40:123–126

    Article  Google Scholar 

  • Kucha H, Schroll E, Raith JG, Halas S (2010) Microbial Sphalerite formation in carbonate-hosted Zn-Pb ores, Bleiberg, Austria: micro- to nanotextural and sulfur isotope evidence. Econ Geol 105:1005–1023

    Article  Google Scholar 

  • Large RR (1992) Australian volcanic-hosted massive sulfide deposits: features, styles and genetic models. Econ Geol 87:471–510

    Article  Google Scholar 

  • Leach DL, Viets JB, Foley-Ayuso N, Klein DP (1995) Mississippi Valley-type Pb-Zn deposits. Preliminary compilation of descriptive geoenvironmental mineral deposit models US Geological Survey Open-File Report 95-831: 234–243

  • Leistel JM, Marcoux E, Thieblemont D, Quesada C, Sanchez A, Almodovar GR, Pascual E, Saez R (1998) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Review and preface to the special issue. Mineral Deposita 33:2–30

    Article  Google Scholar 

  • Leverett P, McKinnon AR, Williams PA (2005) Supergene geochemistry of the Endeavor ore body, Cobar, NSW, and relationships to other deposits in the Cobar Basin. Proceedings Regolith 2005, p. 191–194

  • Lovley DR (1997) Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20:305–313

    Article  Google Scholar 

  • Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65

    Article  Google Scholar 

  • Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment Geol 140:143–175

    Article  Google Scholar 

  • Manzano M, Soler A, Carrera J, Custodio E (2004) Estudio Isotópico del Origen del Sulfato del Agua Subterránea en la Zona Afectada por el Vertido Minero de Aznalcóllar (SO España). Seminarios Sociedad Española de Mineralogía 1:71–88

    Google Scholar 

  • May ER (1977) Flambeau: a Precambrian supergene enriched massive sulfide deposit. University of Wisconsin, Geological and Natural History Survey 24 p

  • McCrea JM (1959) On the isotopic chemistry of carbonates and the paleotemperature scale. J Phys Chem 18:849–857

    Article  Google Scholar 

  • Melcher F, Oberthur T, Rammlmair D (2006) Geochemical and mineralogical distribution of germanium in the Khusib Springs Cu-Zn-Pb-Ag sulfide deposit, Otavi Mountain Land, Namibia. Ore Geol Rev 28:32–56

    Article  Google Scholar 

  • Melchiorre EB, Enders MS (2003) Stable isotope geochemistry of copper carbonates at the Northwest Extension Deposit, Morenci district, Arizona: implications for conditions of supergene oxidation and related mineralization. Econ Geol 98:607–621

    Google Scholar 

  • Melchiorre EB, Williams PA (2001) Stable isotope characterization of the thermal profile and subsurface biological activity during oxidation of the Great Australia deposit, Cloncurry, Queensland, Australia. Econ Geol 96:1685–1693

    Article  Google Scholar 

  • Melchiorre EB, Criss RE, Rose TP (1999) Oxygen and carbon isotope study of natural and synthetic malachite. Econ Geol 94:245–259

    Article  Google Scholar 

  • Melendez-Hevia E, Alvarez del Buergo E (1996) Oil and gas resources of the Tertiary basins of Spain In: Friend PF, Dabrio CJ (eds) Tertiary Basins of Spain: The Stratigraphic Record of Crustal Kinematics. Cambridge University Press, pp 20-23

  • Menor C, Tornos F, Fernandez Remolar D, Amils R (2010) Association between catastrophic paleovegetation changes at the Devonian-Carboniferous boundary and the formation of giant massive sulfide deposits. Earth Planet Sci Lett 299:398–408

    Article  Google Scholar 

  • Miguelez NG, Tornos F, Velasco F, Videira JC (2011) The unusual supergene Las Cruces copper ore deposit. In: Barra F, Reich M, Campos E, Tornos F (eds) SGA Biennial Meeting Proceedings: Let’s talk Ore Deposits. Antofagasta, pp 832–834

  • Miguélez NG, Mathur R, Tornos F, Velasco F, Cooper S (2012a) A copper isotope study in the rich Las Cruces ore deposit to trace a new mineralization style in the Iberian Pyrite Belt. Min Mag 75:1467

    Google Scholar 

  • Miguélez NG, Mathur R, Tornos F, Velasco F, Cooper S (2012b) A copper isotope study of the Las Cruces ore deposit and its comparison with Rio Tinto and Tharsis mineralizations of the Iberian PyriteBelt (SW Spain). Abstracts SEG Conference, Lima

    Google Scholar 

  • Moreno C (1993) Postvolcanic paleozoic of the Iberian Pyrite Belt: an example of basin morphologic control on sediment distribution in a turbidite basin. J Sediment Petrol 63:1118–1128

    Article  Google Scholar 

  • Moreno C, Sierra S, Saez R (1996) Evidence for catastrophism at the Famennian-Dinantian boundary in the Iberian Pyrite Belt. In: Strogen P, Somervilee ID, Jones GL (eds) Recent advances in Lower Carboniferous Geology. Geol Soc London, pp 153–162

  • Moreno C, Capitan MA, Doyle M, Nieto JM, Ruiz F, Saez R (2003) Edad mínima del gossan de Las Cruces: implicaciones sobre la edad del inicio de los ecosistemas extremos en la Faja Pirítica Ibérica. Geogaceta 33:67–70

    Google Scholar 

  • Morris RC, Fletcher AB (1987) Increased solubility of quartz following ferrous-ferric iron reactions. Nature 330:558–561

    Article  Google Scholar 

  • Neal AL, Techkarnjanaruk S, Dohnalkova A, McCready D, Peyton BM, Geesey GG (2001) Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria. Geochim Cosmochim Acta 65:223–235

    Article  Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits stable isotopes in high temperature geological processes. Rev Mineral 16:491–555

    Google Scholar 

  • Ohmoto H, Lasaga A (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim Cosmochim Acta 46:1727–1745

    Article  Google Scholar 

  • Oliveira JT (1990) South Portuguese zone: introduction. Stratigraphy and synsedimentary tectonism. In: Dallmeyer RD, Martinez García E (eds) Premesozoic geology of Iberia. Springer Verlag, Heidelberg, pp 333–347

    Chapter  Google Scholar 

  • Oliveira V, Matos J, Bengala M, Silva N, Suosa P, Torres L (1998) Geology and geophysics as successful tools in the discovery of the Lagoa Salgada orebody (Sado Tertiary Basin-Iberian Pyrite Belt), Grandola, Portugal. Mineral Deposita 33:170–187

    Article  Google Scholar 

  • Oliveira DPS, Matos JX, Rosa CJP, Rosa DRN, Figueiredo MO, Silva TP, Guimaraes F, Carvalho JRS, Pinto AMM, Relvas JRMS, Reiser FKM (2011) The Lagoa Salgada Orebody, Iberian Pyrite Belt, Portugal. Econ Geol 106:1111–1128

    Article  Google Scholar 

  • Onezime J, Charvet J, Faure M, Chauvet A, Panis D (2002) Structural evolution of the southernmost segment of the West European Variscides: the South Portuguese Zone (SW Iberia). J Struct Geol 24:451–468

    Article  Google Scholar 

  • Paytan A (2000) Sulfate clues for the early history of atmospheric oxygen. Science 288:626–627

    Article  Google Scholar 

  • Paytan A, Kastner M, Campbell D, Thiemens MH (1998) Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282:1459–1462

    Article  Google Scholar 

  • Pereira Z, Saez R, Pons JM, Oliveira JT, Moreno C (1996) Edad devónica (Struniense) de las mineralizaciones de Aznalcóllar (Faja Pirítica Ibérica) en base a palinología. Geogaceta 20:1609–1612

    Google Scholar 

  • Pereira Z, Matos J, Fernnades P, Oliveira JT (2008) Palynostratigraphy and systematic palynology of the Devonian and Carboniferous sucessions of the South Portuguese Zone, Portugal. Memorias do Instituto de Engenharia, Tecnologia e Inovaçao:181

  • Polag D, Heuwinkel H, Laukenmann S, Greule M, Keppler F (2013) Evidence of anaerobic syntrophic acetate oxidation in biogas batch reactors by analysis of 13C carbon isotopes. Isot Environ Health Stud 49:365–377

    Article  Google Scholar 

  • Potter R (1977) An electrochemical investigation of the system copper-sulfur. Econ Geol 72:1524–1542

    Article  Google Scholar 

  • Pracht J, Boenigk J, Isenbeck-Schröter M, Keppler F, Schöler HF (2001) Abiotic Fe(III) induced mineralization of phenolic substances. Chemosphere 44:613–619

    Article  Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70:87–124

    Article  Google Scholar 

  • Quesada C (1998) A reappraisal of the structure of the Spanish segment of the Iberian Pyrite Belt. Mineral Deposita 33:31–44

    Article  Google Scholar 

  • Rahmdor P (1980) The ore minerals and their intergrowths. Pergamon Press

  • Raiswell R, Plant J (1980) The incorporation of trace elements into pyrite during diagenesis of black shales, Yorkshire, England. Econ Geol 75:684–699

    Article  Google Scholar 

  • Rasmussen B (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405:676–679

    Article  Google Scholar 

  • Reed M, Rusk B, Palandri J (2013) The Butte magmatic-hydrothermal system: one fluid yields all alteration and veins. Econ Geol 108:1379–1396

    Article  Google Scholar 

  • Reith F, Fairbrother L, Nolze G, Wilhelmi O, Clode PL, Gregg A, Parsons JE, Wakelin SA, Pring A, Hough R, Southam G, Brugger J (2010) Nanoparticle factories: biofilms hold the key to gold dispersion and nugget formation. Geology 38:843–846

    Article  Google Scholar 

  • Relvas J (1991) Estudo Geológico e Metalogenético da Área de Gavião, Baixo Alentejo Unpublished MSc thesis. University of Lisbon, Portugal, 248 p

    Google Scholar 

  • Révész K, Haiping Q (2007) Determination of the δ(34S/32S) of sulfate in water: RSIL Lab Code 1951. In: Révész K, Koplen TB (eds) Methods of the Reston Stable Isotope Laboratory: Reston, Virginia, USGS Techniques and Methods, book 10, sec C, chap 10. pp 33

  • Roland GW (1970) Phase relations below 575 degrees C in the system Ag-As-S. Econ Geol 65:241

    Article  Google Scholar 

  • Rosa CJP, McPhie J, Relvas JMRS (2010) Type of volcanoes hosting the massive sulfide deposits of the Iberian Pyrite Belt. J Volcanol Geotherm Res 194:107–126

    Article  Google Scholar 

  • Roseboom EH (1966) An investigation of the system Cu-S and some natural copper sulfides between 25 degrees and 700 degrees C. Econ Geol 61:641–672

    Article  Google Scholar 

  • Roveri M, Lugli S, Manzi V, Gennari R, Schreiber BC (2014) High-resolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: implications for marginal to central basins correlation. Mar Geol 349:113–125

    Article  Google Scholar 

  • Rudnicki MD, Elderfield H, Spiro B (2000) Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures. Geochim Cosmochim Acta 65:777–789

    Article  Google Scholar 

  • Rye RO, Bethke PM, Wasserman MD (1992) The stable isotope geochemistry of acid sulfate alteration. Econ Geol 87:225–262

    Article  Google Scholar 

  • Sáenz de Galdeano C, Vera JA (1992) Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera. Basin Res 4:21–36

    Article  Google Scholar 

  • Sáez R, Almodovar GR, Pascual E (1996) Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt. Ore Geol Rev 11:429–451

    Article  Google Scholar 

  • Salata GG, Roelke LA, Cifuentes LA (2000) A rapid and precise method for measuring stable carbon isotope ratios of dissolved inorganic carbon. Mar Chem 69:153–161

    Article  Google Scholar 

  • Sánchez España J, Lopez Pamo E, Santofimia E, Diez Ercilla M (2008) The acidic mine pit lakes of the Iberian Pyrite Belt: an approach to their physical limnology and hydrogeochemistry. Appl Geochem 23:1260–1287

    Article  Google Scholar 

  • Sato M (1960) Oxidation of sulfide orebodies. Econ Geol 55:928–961

    Article  Google Scholar 

  • Scheiber L, Ayora C, Vazquez-Suñe E, Cendón DI, Soler A, Custodio E, Baquero JC (2015) Recent and old groundwater in the Niebla-Posadas regional aquifer (southern Spain): implications for its management. J Hydrol 523:624–635

    Article  Google Scholar 

  • Scott KM, Ashley PM, Lawie DC (2001) The geochemistry, mineralogy and maturity of gossans derived from volcanogenic Zn-Pb-Cu deposits of the eastern Lachlan Fold Belt, NSW, Australia. J Geochem Explor 72:169–191

    Article  Google Scholar 

  • Sheppard SMF (1986) Characterization and isotopic variations in natural waters. Rev Mineral Geochem 16:165–184

    Google Scholar 

  • Shock EL (2009) Minerals as energy sources for microorganisms. Econ Geol 104:1235–1248

    Article  Google Scholar 

  • Sillitoe RH (2005) Supergene oxidized and enriched porphyry copper and related deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology—one hundredth anniversary volume pp 723-768

  • Silva JB, Oliveira JT, Ribeiro A (1990) Structural outline of the South Portuguese Zone. In: Dallmeyer RD, Martinez García E (eds) PreMesozoic geology of Iberia. Springer Verlag, Heidelberg, pp 348–362

    Chapter  Google Scholar 

  • Simmons SF, Christenson BW (1994) Origins of calcite in a boiling geothermal system. Am J Sci 294:361–400

    Article  Google Scholar 

  • Sood MK, Wagner RJ, Markazi HD (1986) Stratabound copper deposits in East South-Central Alaska: their characteristics and origin. In: Friedrich G, Genkin A, Naldrett A, Ridge J, Sillitoe R, Vokes F (eds) Geology and metallogeny of copper deposits. Springer, Berlin, pp 422–442

    Chapter  Google Scholar 

  • Southam G, Saunders JA (2005) The geomicrobiology of ore deposits. Econ Geol 100:1067–1084

    Article  Google Scholar 

  • Southam G, Lengke MF, Fairbrother L, Reith F (2009) The biogeochemistry of gold. Elements 5:303–307

    Article  Google Scholar 

  • Spiro B, Gibson PJ, Shaw HF (1993) Eogenetic siderites in lacustrine oil shales from Queensland. Australia. A stable isotope study. Chem Geol 106:415–427

    Article  Google Scholar 

  • Spycher NF, Reed MH (1989) Evolution of a Broadlands-type epithermal ore fluid along alternative P-T paths; implications for the transport and deposition of base, precious, and volatile metals. Econ Geol 84:328–359

    Article  Google Scholar 

  • Sracek O, Gélinas P, Lefebvre R, Nicholson RV (2006) Comparison of methods for the estimation of pyrite oxidation rate in a waste rock pile at Mine Doyon site, Quebec, Canada. J Geochem Explor 91:99–109

    Article  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158

    Article  Google Scholar 

  • Strauss H, Schieber J (1990) A sulfur isotope study of pyrite genesis: the Mid-Proterozoic Newland Formation, Belt Supergroup, Montana. Geochim Cosmochim Acta 54:197–204

    Article  Google Scholar 

  • Taylor R (2011) Gossans and leached cappings—field assessment. Springer, 165 pp

  • Taylor GF, Sylvester GC (1982) Analysis of a weathered profile on sulfide mineralization at Mugga Mugga, Western Australia. J Geochem Explor 16:105–134

    Article  Google Scholar 

  • Thieblemont D, Pascual E, Stein G (1998) Magmatism in the Iberian Pyrite Belt: petrological constraints on a metallogenic model. Mineral Deposita 33:98–110

    Google Scholar 

  • Titley SR, Beane RE (1981) Porphyry copper deposits. Part I: Geologíc settings, petrology and tectogenesis. In: Skinner BJ (ed) Econ Geol 75th Anniversary Volume, pp 214-234

  • Tornos F (2006) Environment of formation and styles of volcanogenic massive sulfides: the Iberian Pyrite Belt. Ore Geol Rev 28:259–307

    Article  Google Scholar 

  • Tornos F, Gonzalez Clavijo E, Spiro BF (1998) The Filón Norte orebody (Tharsis, Iberian Pyrite Belt): a proximal low-temperature shale-hosted massive sulphide in a thin-skinned tectonic belt. Mineral Deposita 33:150–169

    Article  Google Scholar 

  • Tornos F, Solomon M, Conde C, Spiro BF (2008) Formation of the Tharsis massive sulfide deposit, Iberian Pyrite Belt: Geological, lithogeochemical, and stable isotope evidence for deposition in a brine pool. Econ Geol 103:185–214

    Article  Google Scholar 

  • Tornos F, Miguelez NG, Velasco F, Videira JC (2011) Biogenic supergene galena-rich ore in the Las Cruces deposit, Spain. Min Mag 75:2024

    Google Scholar 

  • Tornos F, Velasco F, Miguelez NG (2012a) The secondary high-grade Cu deposit of Las Cruces (S Spain): a VMS deposit with superimposed epithermal-like present-day mineralization. Abstracts European Mineralogical Conference, 1: EMC2012-251. Frankfurt

  • Tornos F, Velasco F, Miguelez NG (2012b) Secondary vs supergene ore enrichment. The high grade Cu ores of Las Cruces mine (S Spain). Abstract SEG Conference Lima

  • Tornos F, Velasco F, Miguelez NG, Escobar JM (2013) Polyphase secondary alteration and the formation of complex Cu and Pb-Ag-Au-rich assemblages, Las Cruces copper deposit, SW Spain Mineral Deposit Research for a High Tech World -12th SGA Biennial Meeting 2013 pp 587-589

  • Tornos F, Velasco F, Menor-Salvan C, Delgado A, Slack JF, Escobar JM (2014) Formation of recent Pb-Ag-Au mineralization by potential sub-surface microbial activity. Nat Commun 5:4600. doi:10.1038/ncomms5600

    Article  Google Scholar 

  • Turpin L, Leroy JL, Sheppard SMF (1990) Isotopic systematics (O, H, C, Sr, Nd) of superimposed barren and U-bearing hydrothermal systems in an Hercynian granite, Massif Central, France. Chem Geol 88:85–98

    Article  Google Scholar 

  • Valenzuela A, Donaire T, Gonzalez-Roldan MJ, Toscano M, Pascual E (2011a) Volcanic architecture in the Odiel river area and the volcanic environment in the Rio Tinto-Nerva Unit, Iberian Pyrite Belt, Spain. J Volcanol Geotherm Res 202:29–46

    Article  Google Scholar 

  • Valenzuela A, Donaire T, Pin C, Toscano M, Hamilton MA, Pascual E (2011b) Geochemistry and U-Pb dating of felsic volcanic rocks in the Riotinto-Nerva unit, Iberian Pyrite Belt, Spain: crustal thinning, progressive crustal melting and massive sulphide genesis. J Geol Soc 168:717–731

    Article  Google Scholar 

  • Velasco F, Sanchez España J, Boyce A, Fallick AE, Saez R, Almodovar GR (1998) A new sulphur isotopic study of some Iberian Pyrite Belt deposits: evidence of a textural control on some sulphur isotope compositions. Mineral Deposita 34:1–18

    Article  Google Scholar 

  • Velasco F, Herrero JM, Suarez S, Yusta I, Alvaro A, Tornos F (2013) Supergene features and evolution of the gossans capping the massive sulphide deposits of the Iberian Pyrite Belt. Ore Geol Rev 53:181–203

    Article  Google Scholar 

  • Viñals J, Roca A, Cruells M, Núñez C (1995) Characterization and cyanidation of Rio Tinto gossan ores. Can Metall Q 34:115–122

    Article  Google Scholar 

  • Williams D (1934) The geology of the Rio Tinto mines, Spain. Trans Inst Min Metall 43:b593–b678

    Google Scholar 

  • Winter LS, Tosdal RM, Mortensen JK, Franklin JM (2004) Volcanic stratigraphy and geochronology of the Cretaceous Lancones basin, Northwestern Peru: Position and timing of giant VMS Deposits. Econ Geol 105:713–742

    Article  Google Scholar 

  • Yapp CJ (1987) Oxygen and hydrogen isotope variations among goethites (α-FeOOH) and the determination of paleotemperatures. Geochim Cosmochim Acta 51:355–364

    Article  Google Scholar 

  • Yapp CJ (2007) Oxygen isotopes in synthetic goethite and a model for the apparent pH dependence of goethite–water 18O/16O fractionation. Geochim Cosmochim Acta 71:1115–1129

    Article  Google Scholar 

  • Yesares L, Nieto JM, Saez R, Almodovar GR, Videira JC (2011a) El Gossan de "Las Cruces" (Faja Piritica Ibérica): Litología y Evolución Mineralógica. Macla 13:225-226

  • Yesares L, Nieto JM, Saez R, Almodovar GR, Videira JC (2011b) Enriquecimiento de Au-Ag-Hg en el Gossan de Las Cruces (Sevilla). Macla 15

  • Yesares L, Sáez R, Nieto JM, de Almodóvar GR, Cooper S (2014) Supergene enrichment of precious metals by natural amalgamation in the Las Cruces weathering profile (Iberian Pyrite Belt, SW Spain). Ore Geol Rev 58:14–26

    Article  Google Scholar 

  • Yesares L, Sáez R, Nieto JM, De Almodovar GR, Gómez C, Escobar JM (2015) The Las Cruces deposit, Iberian Pyrite Belt, Spain. Ore Geol Rev 66:25–46

    Article  Google Scholar 

  • Zehnder AJB, Brock TD (1980) Anaerobic methane oxidation: occurrence and ecology. Appl Environ Microbiol 39:194–204

    Google Scholar 

  • Zheng YF (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091

    Article  Google Scholar 

  • Zierenberg RA, Schiffman P (1990) Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge. Nature 348:155–157

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Spanish project SEIDI CGL 2011-23207 to FT and FV, the grant IT762-13 (GIC12/104) of the Basque Government to FV and, in its initial stages, by ProMine EU project FP7-NMP-2008-LARGE-2 228559. We would like to thank Cobre Las Cruces SA (First Quantum Minerals) for granting access to the open pit mine and allowing sampling of drill cores and waters. Special thanks are given to Ivan Carrasco, Juan Carlos Baquero, Antonio Francos, José Gómez, and Gobain Obejero for continuous support and sharing knowledge of the mine. We also acknowledge Carmen Conde, Cesar Menor, and Juan Carlos Videira for fruitful discussions and advice on the geology and mineralogy of the deposit. We additionally thank Carlos Ayora (CSIC), Baruch Spiro (Natural History Museum, London), and Ricardo Amils, Monika Oggerin, Nuria Rodriguez, and Enoma Omoregie (all Centro de Astrobiología, CSIC-INTA) for comments and suggestions on geomicrobiology, Clemente Recio (Universidad de Granada) for help in the stable isotope data, and Terry Spell for suggestions on interpretation of the Ar-Ar ages. We are also indebted to the technicians from the laboratories (including Sgiker of the University of the Basque Country) for their help with the analyses presented in this research. Finally, we thank Erik Melchiorre, Albert Gilg, and Bernd Lehmann for the thoughtful review and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Tornos.

Additional information

Editorial handling: A. Gilg

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

Isotopic composition of water in Las Cruces deposit (PDF 106 kb)

ESM Table 2

Representative whole-rock analyses of samples from biogenic zone and related rocks (PDF 47.7 kb)

ESM Table 3

Ar-Ar geochronological data for secondary acidic alteration zone. All data are reported at 1σ uncertainty level, unless noted otherwise (PDF 96.6 kb)

ESM Table 4

Electron microprobe analyses of enargite (PDF 74.4 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tornos, F., Velasco, F., Slack, J.F. et al. The high-grade Las Cruces copper deposit, Spain: a product of secondary enrichment in an evolving basin. Miner Deposita 52, 1–34 (2017). https://doi.org/10.1007/s00126-016-0650-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-016-0650-3

Keywords

  • Pyrite
  • Chalcopyrite
  • Galena
  • Massive Sulphide
  • Bornite