Skip to main content
Log in

The Nolans Bore rare-earth element-phosphorus-uranium mineral system: geology, origin and post-depositional modifications

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Nolans Bore is a rare-earth element (REE)-U-P fluorapatite vein deposit hosted mostly by the ~1805 Ma Boothby Orthogneiss in the Aileron Province, Northern Territory, Australia. The fluorapatite veins are complex, with two stages: (1) massive to granular fluorapatite with inclusions of REE silicates, phosphates and (fluoro)carbonates, and (2) calcite-allanite with accessory REE-bearing phosphate and (fluoro)carbonate minerals that vein and brecciate the earlier stage. The veins are locally accompanied by narrow skarn-like (garnet-diopside-amphibole) wall rock alteration zones. SHRIMP Th-Pb analyses of allanite yielded an age of 1525 ± 18 Ma, interpreted as the minimum age of mineralisation. The maximum age is provided by a ~1550 Ma SHRIMP U-Pb age for a pegmatite that predates the fluorapatite veins. Other isotopic systems yielded ages from ~1443 to ~345 Ma, implying significant post-depositional isotopic disturbance. Calculation of initial εNd and 87Sr/86Sr at 1525 Ma and stable isotope data are consistent with an enriched mantle or lower crust source, although post-depositional disturbance is likely. Processes leading to formation of Nolans Bore began with north-dipping subduction along the south margin of the Aileron Province at 1820–1750 Ma, producing a metasomatised, volatile-rich, lithospheric mantle wedge. About 200 million years later, near the end of the Chewings Orogeny, this reservoir and/or the lower crust sourced alkaline low-degree partial melts which passed into the mid- and upper-crust. Fluids derived from these melts, which may have included phosphatic melts, eventually deposited the Nolans Bore fluorapatite veins due to fluid-rock interaction, cooling, depressurisation and/or fluid mixing. Owing to its size and high concentration of Th (2500 ppm), in situ radiogenic heating caused significant recrystallisation and isotopic resetting. The system finally cooled below 300 °C at ~370 Ma, possibly in response to unroofing during the Alice Springs Orogeny. Surface exposure and weathering of fluorapatite produced acidic fluids and intense, near-surface kaolinitised zones that include high-grade, supergene-enriched cheralite-rich ores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Antignano A, Manning CE (2008) Fluorapatite solubility in H2O and H2O–NaCl at 700 to 900 °C and 0.7 to 2.0 GPa. Chem Geol 251:112–119

    Article  Google Scholar 

  • Arafura Resources (2015) Large increase in mineral resources for Nolans project. Unpublished release to Australian Stock Exchange, 30 October 2015, 29 p

  • Bagas L, Bierlein FP, Anderson JAC, Maas R (2010) Collision-related granitic magmatism in the granites–Tanami Orogen, Western Australia. Precambrian Res 177:212–226

    Article  Google Scholar 

  • Beardsmore GR, Cull JP (2001) Crustal heat flow: a guide to measurement and modelling. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Beaudoin G, Therrier P (2009) The updated web stable isotope fractionation calculator. Handbook of stable isotope analytical techniques, pp. 1120–1122.

  • Bell K, Simonetti A (2010) Source of parental melts to carbonatites–critical isotopic constraints. Mineral Petrol 98:77–89

    Article  Google Scholar 

  • Berger A, Gnos E, Janots E, Fernandez A, Giese J (2008) Formation and composition of rhabdophane, bastnasite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chem Geol 254:238–248

    Article  Google Scholar 

  • Betts PG, Giles D (2006) The 1800–1100 Ma tectonic evolution of Australia. Precambrian Res 144:92–125

    Article  Google Scholar 

  • Birkett TC, Sinclair WD (1998) Rare metal replacement deposits (skarns and fenites) associated with alkalic and carbonatite complexes. Mineral Assoc Can Short Course Ser 26:445–473

    Google Scholar 

  • Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for NaCI-H20 fluid inclusions. In: De Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals: methods and applications. Virginia Polytechnic Inst State Univ, Blacksburg, pp 117–131

    Google Scholar 

  • Brugger J, Maas R, Lahaye Y, McRae C, Ghaderi M, Costa S, Lambert D, Bateman R, Prince K (2002) Origins of Nd-Sr-Pb isotopic variations in single scheelite grains from Archean gold deposits, Western Australia. Chem Geol 182:203–225

    Article  Google Scholar 

  • Budd AR (1997) The metallogenic potential of Australian Proterozoic Granites: the Arunta Inlier. Australian Geological Survey Organisation, Canberra

    Google Scholar 

  • Cartwright I, Buick IS, Foster DA, Lambert DD (1999) Alice Springs age shear zones from the southeastern Reynolds Range, central Australia. Aust J Earth Sci 46:355–363

    Article  Google Scholar 

  • Chacko T, Riciputi LR, Cole DR, Horita J (1999) A new technique for determining equilibrium hydrogen isotope fractionation factors using the ion microprobe: application to the epidote-water system. Geochim Cosmochim Acta 63:1–10

    Article  Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (2012) Rare earth mineralization in igneous rocks: sources and processes. Elements 8:347–353

    Article  Google Scholar 

  • Chamberlain KR, Bowring SA (2000) Apatite-feldspar thermochronometer: a reliable, mid-range (~450°C) diffusion-controlled system. Chem Geol 172:73–200

    Google Scholar 

  • Chao ECT, Back JM, Minkin JA, Yinchen R (1992) Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REE-Fe-Nb ore deposit, Inner Mongolia, PRC. Appl Geochem 7:443–458

    Article  Google Scholar 

  • Claoué-Long J, Edgoose C, Worden K (2008) A correlation of Aileron Province stratigraphy in central Australia. Precambrian Res 166:230–245

    Article  Google Scholar 

  • Collins WJ, Williams IS (1995) SHRIMP ionprobe dating of short-lived Proterozoic tectonic cycles in the northern Arunta Inlier, central Australia. Precambrian Res 71:69–89

    Article  Google Scholar 

  • Cross A, Claoué-Long JC, Scrimgeour, IR, Crispe A, Donnellan, N (2005) Summary of results, joint NTGS-GA geochronology project, northern Arunta and Tanami Regions. North Territory Geol Surv Rec 2005–003.

  • Dolejš D, Manning CE (2010) Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid‐flow systems. Geofluids 10:20–40

    Google Scholar 

  • Downes PJ, Demény A, Czuppon G, Jaques AL, Verrall M, Sweetapple M, Adams D, McNaughton NJ, Gwalani LG, Griffin BJ (2014) Stable H–C–O isotope and trace element geochemistry of the Cummins Range Carbonatite Complex, Kimberley region, Western Australia: implications for hydrothermal REE mineralization, carbonatite evolution and mantle source regions. Mineral Deposita 49:905–932

    Article  Google Scholar 

  • Duncan RK, Willett GC (1990) Mount weld carbonatite. Australas Inst Mining Metall Monogr 14:591–597

    Google Scholar 

  • Edfelt A, Armstrong RN, Smith M, Martinsson O (2005) Alteration paragenesis and mineral chemistry of the Tjårrojåkka apatite–iron and Cu (−Au) occurrences, Kiruna area, northern Sweden. Mineral Deposita 40:409–434

    Article  Google Scholar 

  • Edgoose C (2013) Ngalia Basin. North Territory Geol Surv Spec Pub 5(24):1–25

    Google Scholar 

  • Etheridge MA, Rutland RWR, Wyborn LAI (1987) Orogenesis and tectonic process in the Early to Middle Proterozoic of northern Australia. Proterozic Lithospheric Evolution, 131–147

  • Flowers RM, Bowring SA, Tulloch AJ, Klepeis KA (2005) Tempo of burial and exhumation within the deep roots of a magmatic arc, Fiordland, New Zealand. Geology 33:17–20

    Article  Google Scholar 

  • Giuliani A, Phillips D, Kamenetsky VS, Fiorentini ML, Farquhar J, Kendrick MA (2014) Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: a review. Chem Geol 374–375:61–83

    Article  Google Scholar 

  • Gregory CJ, Rubatto D, Allen CM, Williams IS, Hermann J, Ireland T (2007) Allanite micro-geochronology: a LA-ICP-MS and SHRIMP U–Th–Pb study. Chem Geol 245:162–182

    Article  Google Scholar 

  • Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654

    Article  Google Scholar 

  • Hoatson DM, Jaireth S, Miezitis Y (2011) The major rare-earth-element deposits of Australia: geological setting, exploration, and resources. Geoscience Australia, Canberra, 204

    Google Scholar 

  • Hu G, Clayton RN (2003) Oxygen isotope salt effects at high pressure and high temperature and the calibration of oxygen isotope geothermometers. Geochim Cosmochim Acta 67:3227–3246

    Article  Google Scholar 

  • Hussey KJ, Huston DL, Claoué-Long JC (2005) Geology and origin of some Cu-Pb-Zn (Au-Ag) deposits in the Strangways Metamorphic Complex, Arunta region Northern Territory. Northern Territory Geol Surv Rep 17

  • Huston D, Maas R, Fraser G, Hussey K (2011) Nolans Bore REE-U-Th deposit, Northern Territory. Geosci Aust Rec 2011–12:9–20

    Google Scholar 

  • Huston DL, Blewett RS, Champion DC (2012) Australia through time: a summary of its tectonic and metallogenic evolution. Episodes 35:23–43

    Google Scholar 

  • Jaques AL (2008) Australian carbonatites: their resources and geodynamic setting. 9th International Kimberlite Conference Extended Abstract 91KC-A-00347.

  • Korsch RJ, Kositcin N, Champion DC (2011) Australian island arcs through time: geodynamic implications for the Archean and Proterozoic. Gondwana Res 19:716–734

    Article  Google Scholar 

  • Lentz D (1998) Late-tectonic U-Th-Mo-REE skarn and carbonatitic vein-dyke systems in the southwestern Grenville Province: a pegmatite-related pneumatolytic model linked to marble melting (limestone syntexis). Mineral Assoc Can Short Course Ser 26:519–657

    Google Scholar 

  • Long KR, Van Gosen BS, Foley NK, Cordier D (2010) The principal rare earth element deposits of the United States—a summary of domestic deposits and a global perspective. United States Geological Survey Scientific Investigations Report 2010–5220, 96 p.

  • Lottermoser BG (1990) Rare earth element mineralisation within the Mt. Weld carbonatite laterite, Western Australia. Lithos 24:151–167

    Article  Google Scholar 

  • Ludwig KR (2001) Isoplot/Ex 2.49. Berkley Geocronology Center.

  • Ludwig KR (2003) User’s Manual for Isoplot 3.6 (April 2008 revision). Berkeley Geochronology Center Special Publication 4.

  • Ludwig KR (2009) SQUID 2 Rev. 2.50: a user’s manual. Berkeley Geochronology Center Special Publication 5

  • Maas R, McCulloch MT, Campbell IH, Page RW (1987) Sm-Nd isotope systematics in uranium rare-earth element mineralization at the Mary Kathleen uranium mine, Queensland. Econ Geol 82:1805–1826

    Article  Google Scholar 

  • Maas R, Huston D, Hussey K (2009) Isotopic constraints on the genesis of world-class REE-P-U-Th mineralization Nolans Bore, Central Australia. Geochimica et Cosmochimica Acta Supplement 73:809

    Article  Google Scholar 

  • Matthews A, Goldsmidth JR, Clayton RN (1983) Oxygen isotope fractionation between zoisite and water. Geochim Cosmochim Acta 47:645–654

    Article  Google Scholar 

  • McFarlane CRM, McKeough M (2013) Petrogenesis of the Kulyk Lake monazite-apatite-Fe(Ti)-oxide occurrence revealed using in-situ LA-(MC)-ICP-MS trace element mapping, U-Pb dating, and Sm-Nd isotope systematics on monazite. Am Mineral 98:1644–1659

    Article  Google Scholar 

  • McLaren S, Dunlap WJ, Sandiford M, McDougall I (2002) Thermochronology of high heat-producing crust at Mount Painter, South Australia: implications for tectonic reactivation of continental interiors. Tectonics 21(4):2-1–2-18. doi:10.1029/2000TC001275

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE (2014) Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Mineral Deposita 49:987–997

    Article  Google Scholar 

  • Nash JT, Granger HC, Adams SS (1981) Geology and concepts of genesis of important types of uranium deposits. Econ Geol 75th Anniversary Volume, 63–116.

  • Orth K, Meffre S, Davidson G (2014) Age and paragenesis of mineralisation at Coronation Hill uranium deposit, Northern Territory, Australia. Mineral Deposita 49:595–623

    Article  Google Scholar 

  • Polito PA, Kyser TK, Marlatt J, Alexandre P, Bajwah Z, Drever G (2004) Significance of alteration assemblages for the origin and evolution of the Proterozoic Nabarlek unconformity-related uranium deposit, Northern Territory, Australia. Econ Geol 99:113–139

    Google Scholar 

  • Polito PA, Kyser TK, Thomas D, Marlatt J, Drever G (2005) Re-evaluation of the petrogenesis of the Proterozoic Jabiluka unconformity-related uranium deposit, Northern Territory, Australia. Mineral Deposita 40:257–288

    Article  Google Scholar 

  • Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol 140:458–468

    Article  Google Scholar 

  • Savin SM, Epstein S (1970) The oxygen and hydrogen isotope geochemistry of ocean sediments and shales. Geochim Cosmochim Acta 34:43–63

    Article  Google Scholar 

  • Schoneveld L, Spandler C, Hussey K (2015) Genesis of the Central Zone of the Nolans Bore rare earth element deposit, Northern Territory, Australia. Contrib Mineral Petrol 170:11. doi:10.1007/s00410-015-1168-x

  • Scrimgeour IR (2013) Aileron Province. North Territory Geol Surv Spec Pub 5(12):1–74

  • Scrimgeour IR, Close DF (2011) Overview of the geology and tectonics along the Georgina-Arunta seismic traverse. North Territory Geol Surv Rec 2011–002:57–62

  • Scrimgeour IR, Kinny PD, Close DF, Edgoose CJ (2005) High-T granulites and polymetamorphism in the southern Arunta Region, central Australia: evidence for a 1.64 Ga accretional event. Precambrian Res 142:1–27

    Article  Google Scholar 

  • Sheppard SM, Nielsen RL, Taylor HP (1969) Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Econ Geol 64:755–777

    Article  Google Scholar 

  • Smith MP, Henderson P (2000) Preliminary fluid inclusion constraints on fluid evolution in the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Econ Geol 95:1371–1388

    Google Scholar 

  • Sommerauer J, Katz-Lehnert K (1985) Trapped phosphate melt inclusions in silicate-carbonate-hydroxyapatite from comb-layer alvikites from the Kaiserstuhl carbonatite complex (SW-Germany). Contrib Mineral Petrol 91:354–359

    Article  Google Scholar 

  • Spear FS, Parrish RR (1996) Petrology and cooling rates of the Valhalla complex, British Columbia, Canada. J Petrol 37:733–765

    Article  Google Scholar 

  • Stewart AJ (1981) Reynolds Range region, Northern Territory. Bur Mineral Resour Geol Geophys 1:100,000 Map Commentary, 12 p.

  • Sun S-S, Warren RG, Shaw RD (1995) Nd isotope study of granites from the Arunta Inlier, central Australia: constraints on geological models and limitation of the method. Precambrian Res 71:301–314

    Article  Google Scholar 

  • Taylor BE (1992) Degassing of H2O from rhyolitic magma during eruption and shallow intrusion, and the isotopic composition of magmatic water in hydrothermal systems. Geol Surv Jap Rep 279:190–194

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 312

    Google Scholar 

  • Taylor WR, Esslemont G, Sun S-S (1995) Geology of the volcanic-hosted Brockman rare-metal deposit, Halls Creek mobile zone, northwest Australia, Part II—Geochemistry and petrogenesis of the Brockman volcanics. Mineral Petrol 52:231–255

    Article  Google Scholar 

  • Thöni M (2002) Sm-Nd isotope systematics in garnet from different lithologies (Eastern Alps): age results, and an evaluation of potential problems for garnet Sm-Nd chronometry. Chem Geol 185:255–281

    Article  Google Scholar 

  • Torab FM, Lehmann B (2007) Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineral Mag 71:347–363

    Article  Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. Rev Mineral Geochem 53:343–385

    Article  Google Scholar 

  • Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevsky LV, Jeffries T, Dingwell DB (2012) Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim Cosmochim Acta 79:20–40

    Article  Google Scholar 

  • Vry J, Compston W, Cartwright I (1996) SHRIMP II dating of zircons and monazites: reassessing the timing of high‐grade metamorphism and fluid flow in the Reynolds Range, northern Arunta Block, Australia. J Metamorph Geol 14:335–350

    Article  Google Scholar 

  • Williams IS, Buick IS, Cartwright I (1996) An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. J Metamorph Geol 14:29–47

    Article  Google Scholar 

  • Williams PJ, Barton MD, Johnson DA, Fontboté L, De Haller A, Mark G, Oliver NHS, Marschik R (2005) Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. Econ Geol 100th Anniversary Volume, 371–405.

  • Williams-Jones AE, Samson IM, Olivo GR (2000) The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico. Econ Geol 95:327–342

    Article  Google Scholar 

  • Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilisation of the rare earth elements—a tale of “ceria” and “yttria”. Elements 8:355–360

    Article  Google Scholar 

  • Wyborn LAI, Heinrich C, Jaques AL (1994) Australian Proterozoic mineral systems: essential ingredients and mappable criteria. Aus IMM Pub Ser 5(94):109–115

    Google Scholar 

  • Young DN, Fanning CM, Shaw RD, Edgoose CJ, Blake DH, Page RW, Camacho A (1995) U-Pb zircon dating of tectonomagmatic events in the northern Arunta Inlier, central Australia. Precambrian Res 71:45–68

    Article  Google Scholar 

  • Zhao JX, McCulloch MT (1995) Geochemical and Nd isotopic systematics of granites from the Arunta Inlier, central Australia: implications for Proterozoic crustal evolution. Precambrian Res 71(1):265–299

    Article  Google Scholar 

  • Zheng Y-F (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091

    Article  Google Scholar 

Download references

Acknowledgments

This study is published with permission of the Chief Executive Officer of Geoscience Australia. It has benefited from discussions with Lynton Jaques, Jo Whelan and Subhash Jaireth. Arafura Resources are thanked for allowing access to the deposit and publication of these results. Sue Golding at the University of Queensland and Christian Dietz at the University of Tasmania are thanked for facilitating stable isotope measurements. This contribution has benefited from reviews by David Lentz, Eric Potter, Anthony Schofield and John Wilford and is published with permission from the Chief Executive Officer, Geoscience Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Huston.

Additional information

Editorial handling: M. Fayek

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 23 kb)

ESM 2

(PDF 105 kb)

ESM 3

(PDF 146 kb)

ESM 4

(PDF 169 kb)

ESM 5

(PDF 177 kb)

ESM 6

(PDF 131 kb)

ESM 7

(PDF 138 kb)

ESM 8

(PDF 229 kb)

ESM 9

(PDF 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huston, D.L., Maas, R., Cross, A. et al. The Nolans Bore rare-earth element-phosphorus-uranium mineral system: geology, origin and post-depositional modifications. Miner Deposita 51, 797–822 (2016). https://doi.org/10.1007/s00126-015-0631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-015-0631-y

Keywords

Navigation