Mineralium Deposita

, Volume 51, Issue 8, pp 1035–1053 | Cite as

Multiple sulfur isotope and mineralogical constraints on the genesis of Ni-Cu-PGE magmatic sulfide mineralization of the Monchegorsk Igneous Complex, Kola Peninsula, Russia

  • A. Bekker
  • T. L. Grokhovskaya
  • R. Hiebert
  • E. V. Sharkov
  • T. H. Bui
  • K. R. Stadnek
  • V. V. Chashchin
  • B. A. Wing


We present the results of a pilot investigation of multiple sulfur isotopes for the Ni-Cu-PGE sulfide mineralization of the ∼2.5 Ga Monchegorsk Igneous Complex (MIC). Base Metal Sulfide (BMS) compositions, Platinum Group Element (PGE) distributions, and Platinum Group Mineral (PGM) assemblages were also studied for different types of Ni-Cu-PGE mineralization. The uniformly low S content of the country rocks for the MIC as well as variable Sm-Nd isotope systematics and low-sulfide, PGE-rich mineralization of the MIC suggest that S saturation was reached via assimilation of silicates rather than assimilation of sulfur-rich lithologies. R-factor modeling suggests that the mixing ratio for silicate-to-sulfide melt was very high, well above 15,000 for the majority of our mineralized samples, as might be expected for the low-sulfide, PGE-rich mineralization of the MIC. Small, negative Δ33S values (from −0.23 to −0.04 ‰) for sulfides in strongly metamorphosed MIC-host rocks indicate that their sulfur underwent mass-independent sulfur isotope fractionation (MIF) in the oxygen-poor Archean atmosphere before it was incorporated into the protoliths of the host paragneisses and homogenized during metamorphism. Ore minerals from the MIC have similar Δ33S values (from −0.21 to −0.06 ‰) consistent with country rock assimilation contributing to sulfide saturation, but, also importantly, our dataset suggests that Δ33S values decrease from the center to the margin of the MIC as well as from early to late magmatic phases, potentially indicating that both local assimilation of host rocks and S homogenization in the central part of the large intrusion took place.


Platinum Group Element Platinum Group Mineral Bushveld Complex Base Metal Sulfide Sulfide Saturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We dedicate this paper to Mark Barley, who introduced the first author to the question of S sources for Ni-sulfide magmatic deposits almost 10 years ago. Constructive comments by Marco Fiorentini, anonymous reviewer, and the editorial guidance of Wolfgang Maier and Bernd Lehmann are much appreciated. Funding and support for this work was provided by the Geological Survey of Canada’s Target Geoscience Initiative IV (TGI-IV) Program (R.H.), NSERC Discovery and Accelerator Grants (A.B., B.A.W.), and RAS Presidium Program №5, Russia (T.L.G. and E.V.S.). The Stable Isotope Laboratory at McGill is supported by the FQRNT through the GEOTOP research center. We greatly acknowledge Misuk Yun at the SIFIR laboratory of the University of Manitoba for help with S extraction.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alapieti TT, Filén BA, Lahtinen JJ, Lavrov MM, Smolkin VF, Voittsekhovsky SN (1990) Early Proterozoic layered intrusions in the northeastern part of the Fennoscandian Shield. Mineral Petrol 42:1–22CrossRefGoogle Scholar
  2. Amelin YV, Semenov VS (1996) Nd and Sr isotopic geochemistry of mafic layered intrusions in the eastern Baltic shield: implications for the evolution of Paleoproterozoic continental mafic magmas. Contrib Mineral Petrol 124(3–4):255–272CrossRefGoogle Scholar
  3. Amelin YV, Heaman LM, Semenov VS (1995) U-Pb geochronology of layered intrusions in the eastern Baltic Shield: implications for the timing and duration of Paleoproterozoic continental rifting. Precambrian Res 75:31–46CrossRefGoogle Scholar
  4. Bayanova TB, Smolkin VF, Fedotov ZA, Delenitsin AA (2004) Isotopic and Sm-Nd investigations of intrusive and dyke. In: Mitrofanov FP, Smolkin VF (eds) Layered intrusions of the Monchegorsk Ore District: petrology, mineralization, isotopes, and deep structure. Kola Science Center, RAS, Apatity, Russia, pp 5–45, in Russian Google Scholar
  5. Bayanova TB, Fedotov ZA, Serov PA, Zhivkov VA, Elizarov DV (2008) U-Pb isotopic data for baddeleyite and zircon, and Sm-Nd data for rocks of the Monchegorsk ore district. Petrology and mineralogy of the Kola Region. KSC RAS, Apatity, Russia, pp 294–297, in Russian Google Scholar
  6. Bayanova TB, Nerovich LI, Mitrofanov FP, Zhavkov VA, Serov PA (2010) The Monche-tundra Basic Massif of the Kola Region: new geological and isotope geochronological data. Dokl Earth Sci 431(1):288–293CrossRefGoogle Scholar
  7. Bekker A, Barley ME, Fiorentini ML, Rouxel OJ, Rumble D, Beresford SW (2009) Atmospheric sulfur in Archean komatiite-hosted nickel deposits. Sci 326:1086–1089CrossRefGoogle Scholar
  8. Campbell IH, Naldrett AJ (1979) Influence of silicate - sulfide ratios on the geochemistry of magmatic sulfides. Econ Geol 74(6):1503–1506Google Scholar
  9. Canfield DE, Raiswell R, Westrich JT, Reaves CM, Berner RA (1986) The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem Geol 54:149–155CrossRefGoogle Scholar
  10. Chashchin VV, Petrov SV (2013) Low-sulfide PGE ore in the Volchetundra Gabbro-Anorthosite Pluton, Kola Peninsula, Russia. Geology of Ore Deposits 55(5):357–382CrossRefGoogle Scholar
  11. Chashchin VV, Bayanova TB, Levkovich NV (2008) Volcanoplutonic association of the early-stage evolution of the Imandra-Varzuga rift zone, Kola Peninsula, Russia: geological, petrogeochemical, and isotope-geochronological data. Petrology 16(3):279–298CrossRefGoogle Scholar
  12. Chashchin VV, Bayanova TB, Yelizarova IR, Serov PA (2012) The Volch’etundrovsky Massif of the autonomous anorthosite complex of the Main Range, the Kola Peninsula: geological, petrogeochemical, and isotope-geochronological studies. Petrology 20(5):467–490CrossRefGoogle Scholar
  13. Chaussidon M, Lorand JP (1990) Sulfur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France) - an ion microprobe study. Geochimica Et Cosmochimica Acta 54(10):2835–2846Google Scholar
  14. Chaussidon M, Albarède F, Sheppard SMF (1987) Sulfur isotope heterogeneity in the mantle from ion microprobe measurements of sulphide inclusions in diamonds. Nature 330:242–244CrossRefGoogle Scholar
  15. Chaussidon M, Albarede F, Sheppard SMF (1989) Sulfur isotope heterogeneity in the mantle from ion microprobe measurements of sulfide inclusions in diamonds. Nature 330:242–244CrossRefGoogle Scholar
  16. Daly JS, Balagansky VV, Timmerman MJ, Whitehouse MJ (2006) The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, pp 579–598Google Scholar
  17. Dedeev AV, Khashkovskaya TN, Galkin AS (2002) PGE mineralization of the Monchegorsk layered mafic–ultramafic intrusion of the Kola Peninsula. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of Platinum-Group-Elements. Canad. Inst. Mining, Metallurgy and Petroleum, Ottawa, Canada, pp 569–578Google Scholar
  18. Ding X, Ripley EM, Shirey SB, Li C (2012) Os, Nd, O and S isotope constraints on country rock contamination in the conduit-related Eagle Cu-Ni-(PGE) deposit, Midcontinent Rift System. Upper Michigan Geochim Cosmochim Acta 89:10–30CrossRefGoogle Scholar
  19. Donoghue KA, Ripley EM, Li C (2014) Sulfur isotope and mineralogical studies of Ni-Cu sulfide mineralization in the Bovine Igneous Complex intrusion, Baraga Basin, Northern Michigan. Econ Geol 109:325–341CrossRefGoogle Scholar
  20. Eldridge CS, Compston W, Williams IS, Harris JW, Bristow JW (1991) Isotope evidence for the involvement of recycled sediments in diamond formation. Nature 353:649–653CrossRefGoogle Scholar
  21. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Sci 289:756–758CrossRefGoogle Scholar
  22. Fiorentini ML, Bekker A, Rouxel O, Wing BA, Maier W, Rumble D (2012a) Multiple sulfur and iron isotope composition of magmatic NI-Cu-(PGE) sulfide deposits from Eastern Botswana. Econ Geol 107:105–116CrossRefGoogle Scholar
  23. Fiorentini ML, Beresford S, Barley M, Duuring P, Bekker A, Rosengren N, Cas R, Hronsky J (2012b) District to camp controls on the genesis of komatiite-hosted nickel sulfide deposits, Agnew-Wiluna greenstone belt, Western Australia: insights from the multiple sulfur isotopes. Econ Geol 107:781–796CrossRefGoogle Scholar
  24. Grinenko LN, Grinenko VA, Lyakhitskaya IV (1967) Sulfur isotope composition of sulphides in copper-nickel deposits of the Kola Penunsula. Geology of Ore Deposits 9(4):3–17, in Russian Google Scholar
  25. Grokhovskaya TL, Bakaev GF, Shelepina EP, Lapina MI, Laputina IP, Muravitskaya GN (2000) PGE mineralization in the Vuruchuaivench Gabbronorite Massif, Monchegorsk Pluton, Kola Peninsula. Geology of Ore Deposits 42(2):133–146Google Scholar
  26. Grokhovskaya TL, Bakaev GF, Sholokhnev VV, Lapina MI, Muravitskaya GN, Voitekhovich VS (2003) The PGE ore mineralization in the Monchegorsk Igneous Layered Complex (Kola Peninsula, Russia). Geology of Ore Deposits 45(4):287–309Google Scholar
  27. Grokhovskaya TL, Lapina MI, Mokhov AV (2009) Assemblages and genesis of platinum-group minerals in low-sulfide ores of the Monchetundra deposit, Kola Peninsula, Russia. Geology of Ore Deposits 51(6):467–485CrossRefGoogle Scholar
  28. Hiebert R, Bekker A, Wing BA, Rouxel OJ (2013) The role of paragneiss assimilation in the origin of the Voisey’s Bay Ni-Cu sulfide deposit, Labrador: multiple S and Fe isotope evidence. Econ Geol 108:1459–1469CrossRefGoogle Scholar
  29. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229CrossRefGoogle Scholar
  30. Hofmann A, Bekker A, Dirks P, Gueguen B, Rumble D, Rouxel OJ (2014) Comparing orthomagmatic and hydrothermal mineralization models for komatiite-hosted nickel deposits in Zimbabwe using multiple-sulfur, iron, and nickel isotope data. Miner Deposita 49:75–100CrossRefGoogle Scholar
  31. Houlé MG, Lesher CM, Davis PC (2012) Thermomechanical erosion at the Alexo Mine, Abitibi greenstone belt, Ontario: implications for the genesis of komatiite-associated Ni-Cu-(PGE) mineralization. Miner Deposita 47:105–128CrossRefGoogle Scholar
  32. Irvine TN (1975) Crystallization sequences in the Muskox intrusion and other layered intrusions—II. Origin of chromitite layers and similar deposits of other magmatic ores. Geochim Cosmochim Acta 39:991–1008CrossRefGoogle Scholar
  33. Kerr A (2003) The calculation and use of sulfide metal contents in the study of magmatic ore deposits: a methodological analysis. Explor Min Geol 10:289–301CrossRefGoogle Scholar
  34. Konnunaho JP, Hanski EJ, Bekker A, Halkoaho TAA, Hiebert RS, Wing BA (2013) The Archean komatiite-hosted, PGE-bearing Ni-Cu sulfide deposit at Vaara, eastern Finland: evidence for assimilation of external sulfur and post-depositional desulfurization. Miner Deposita 48:967–989CrossRefGoogle Scholar
  35. Labidi J, Cartigny P, Birck JL, Assayag N, Bourrand JJ (2012) Determination of multiple sulfur isotopes in glasses: a reappraisal of the MORB delta S-34. Chem Geol 334:189–198CrossRefGoogle Scholar
  36. Labidi J, Cartigny P, Moreira M (2013) Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501:208–211CrossRefGoogle Scholar
  37. Labidi J, Cartigny P, Jackson MG (2015) Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope ‘mantle array’ in chemical geodynamics. Earth Planet Sci Lett 417:28–39CrossRefGoogle Scholar
  38. Lesher CM (1989) Komatiite-associated nickel sulfide deposits. In: Whitney JA, Naldrett AJ (eds) Ore deposition associated with magmas. Society of Economic Geologists, Dordrecht, pp 45–102Google Scholar
  39. Lesher CM, Burnham OM (2001) Multicomponent elemental and isotopic mixing in Ni-Cu-(PGE) ores at Kambalda, Western Australia. Can Mineral 39:421–446CrossRefGoogle Scholar
  40. Lesher CM, Campbell IH (1993) Geochemical and fluid dynamic modeling of compositional variations in Archean komatiite-hosted nickel sulfide ores in Western Australia. Econ Geol 88:804–816CrossRefGoogle Scholar
  41. Lesher CM, Groves DI (1986) Controls on the formation of komatiite-associated nickel-copper sulfide deposits: geology and metallogenesis of copper deposits. Proceedings of the Twenty-Seventh International Geological Congress, Springer, Berlin, pp. 43–62Google Scholar
  42. Lightfoot PC, Hawkesworth CJ (1997) Flood basalts and magmatic Ni, Cu, and PGE sulfide mineralization: comparative geochemistry of the Noril’sk (Siberian trap) and West Greenland sequences. In: Mahoney JJ, Coffin, MF (eds.), Large igneous provinces: continental, oceanic and planetary flood volcanism. American Geophysical Union Monograph 100, Washington, D.C. pp. 357–380.Google Scholar
  43. Mavrogenes JA, O’Neill HSC (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180CrossRefGoogle Scholar
  44. McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120(3–4):223–253Google Scholar
  45. Melezhik VA, Sturt BA (1994) General geology and evolutionary history of the early Proterozoic Polmak-Pasvik-Pechenga-Imandra/Varzuga-Ust’ Ponoy Greenstone Belt in the northeastern Baltic Shield. Earth Sci Rev 36:205–241CrossRefGoogle Scholar
  46. Melezhik VA, Basalaev AA, Predovsky AA, Balabonin NL, Bolotov VI, Pavlova MA, Gavrilenko BV, Abzalov MZ (1988) Carbonaceous deposits of early stages in Earth’s development (geochemistry and depositional settings on the Baltic Shield). Nauka, Leningrad, 197pp, in Russian Google Scholar
  47. Mungall JE, Naldrett AJ (2008) Ore deposits of the Platinum-Group Elements. Elements 4(4):253–258CrossRefGoogle Scholar
  48. Myskova TA, Berezhnaya NG, Glebovitsky VA, Milkevich RI, Lepekhina EN, Matukov DI, Antonov AV, Sergeev SA, Shuleshko IK (2005) Findings of the oldest (3600 Ma) zircons in gneisses of the Kola Group, Central Kola Block, Baltic Shield: evidence from U-Pb (SHRIMP-II) data. Dokl Earth Sci 402(4):547–550Google Scholar
  49. Naldrett AJ (2010) From the mantle to the bank: the life of a Ni-Cu-(PGE) sulfide deposit. S Afr J Geol 113(1):1–32CrossRefGoogle Scholar
  50. Naldrett AJ (2011) Fundamentals of magmatic sulfide deposits. Rev Econ Geol 17:1–50Google Scholar
  51. Palme H, O’Neill HStC (2014) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) Treatise on geochemistry, vol 3. Elsevier-Pergamon, Oxford, pp 1–39Google Scholar
  52. Penniston-Dorland SC, Wing BA, Nex PAM, Kinnaird JA, Farquhar J, Brown M, Sharman ER (2008) Multiple sulfur isotopes reveal a magmatic origin for the Platreef platinum group element deposit, Bushveld Complex, South Africa. Geology 36:979–982CrossRefGoogle Scholar
  53. Penniston-Dorland SC, Mathez EA, Wing BA, Farquhar J, Kinnaird JA (2012) Multiple sulfur isotope evidence for surface-derived sulfur in the Bushveld Complex. Earth Planet Sci Lett 337–338:236–242CrossRefGoogle Scholar
  54. Petrovskaya LS, Mitrofanov FP, Bayanova TB, Serov PA (2007) The Archean Pulozero-Polnek-Tundra enderbite-granulite complex of the Central Kola Block: stages and formation conditions (Kola Peninsula). Dokl Earth Sci 416(7):1096–1099CrossRefGoogle Scholar
  55. Ripley EM (1999) Systematics of sulphur and oxygen isotopes in mafic igneous rocks and Cu-Ni-PGE mineralization. In: Dynamic processes in magmatic ore deposits and their application in mineral exploration. Geological Association of Canada, Short Course Notes 13:111−158Google Scholar
  56. Ripley EM, Li C (2003) Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits. Econ Geol 98:635–641Google Scholar
  57. Ripley EM, Li CS (2013) Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis? Econ Geol 108(1):45–58CrossRefGoogle Scholar
  58. Rudnick RL, Eldridge CS, Bulanova GP (1993) Diamond growth history from in situ measurement of Pb and S isotopic compositions of sulfide inclusions. Geology 21:13–16CrossRefGoogle Scholar
  59. Schissel D, Tsvetkov AA, Mitrofanov FP, Korchagin AU (2002) Basal Platinum-Group Element mineralization in the Federov Pansky Layered Mafic Intrusion, Kola Peninsula. Russia Econ Geol 97:1657–1677CrossRefGoogle Scholar
  60. Seat Z, Beresford SW, Grguric BA, Gee MAM, Grassineau NV (2009) Reevaluation of the role of external sulfur addition in the genesis of Ni-Cu-PGE deposits: evidence from the Nebo-Babel Ni-Cu-PGE deposit, West Musgrave, Western Australia. Econ Geol 104:521–538CrossRefGoogle Scholar
  61. Sharkov EV (2006) Formation of layered intrusions and their ore mineralization. Nauchnyi Mir, Moscow (in Russian) Google Scholar
  62. Sharkov EV, Chistyakov AV (2012) The Early Paleoproterozoic Monchegorsk Layered Mafite-Ultramafite Massif in the Kola Peninsula: geology, petrology, and ore potential. Petrology 20(7):607–639CrossRefGoogle Scholar
  63. Sharkov EV, Chistyakov AV (2014) Geological and petrological aspects of Ni–Cu–PGE mineralization in the early Paleoproterozoic Monchegorsk layered Mafic–Ultramafic complex, Kola Peninsula. Geology of Ore Deposits 56:147–168CrossRefGoogle Scholar
  64. Sharkov EV, Smolkin VF (1998) Palaeoproterozoic layered intrusions of the Russian part of the Fennoscandian Shield: a review. Trans Inst Min Metallurgy (Sect B: Appl Earth Sci) 107:B23–B38Google Scholar
  65. Sharman ER, Penniston-Dorland SC, Kinnaird JA, Nex PAM, Brown M, Wing BA (2013) Primary origin of marginal Ni-Cu-(PGE) mineralization in layered intrusions: Δ33S evidence from the Platreef, Bushveld, South Africa. Econ Geol 108:365–377CrossRefGoogle Scholar
  66. Ueno Y, Ono S, Rumble D, Maruyama S (2008) Quadruple sulfur isotope analysis of ca. 3.5 Ga Dressler Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim Cosmochim Acta 72:5675–5691CrossRefGoogle Scholar
  67. Wendlandt RF (1982) Sulfide saturation of basalt and andesite melts at high pressures and temperatures. Am Mineral 67:877–885Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Bekker
    • 1
  • T. L. Grokhovskaya
    • 2
  • R. Hiebert
    • 3
  • E. V. Sharkov
    • 2
  • T. H. Bui
    • 4
  • K. R. Stadnek
    • 3
  • V. V. Chashchin
    • 5
  • B. A. Wing
    • 4
  1. 1.Department of Earth SciencesUniversity of CaliforniaRiversideUSA
  2. 2.Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM RAS)MoscowRussia
  3. 3.Department of Geological SciencesUniversity of ManitobaWinnipegCanada
  4. 4.Department of Earth and Planetary Sciences and GEOTOPMcGill UniversityMontrealCanada
  5. 5.Geological Institute, Kola Scientific Centre, Russian Academy of SciencesApatityRussia

Personalised recommendations