Skip to main content
Log in

Mineralogical siting of platinum-group elements in pentlandite from the Bushveld Complex, South Africa

  • Letter
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Bushveld Complex in South Africa hosts the world’s largest resources of platinum-group elements (PGEs), which are mainly mined from three ore bodies, namely the Merensky Reef, the UG-2 chromitite, and the Platreef. In these ores, the PGEs are bimodally distributed, occurring both as discrete platinum-group minerals (PGMs) and hosted by sulfides. The presence of PGEs in sulfides has been demonstrated by electron probe microanalysis, laser ablation induced coupled plasma mass spectrometry, secondary ion mass spectrometry, and particle-induced X-ray emission. However, evidence is lacking on the mineralogical siting of the PGEs, e.g., whether they occur in solid solution, as nano-inclusions, and/or micro-inclusions. Therefore, in the present study, a combination of focused ion beam and transmission electron microscopy was used which allows to obtain crystal structural relationships between the host mineral and incorporated trace elements and revealing the physicochemical state of the PGE in sulfides. The present study confirms the existence of micrometer-sized discrete PGMs in the ores. Further, the PGEs occur in a number of forms, namely (1) as discrete nano-inclusions of PGMs, (2) as patchily distributed solid solution, (3) ordered within the pentlandite crystal structure, substituting for Ni and/or Fe (superlattice), and (4) as homogenous solid solution. Nanometer-sized PGMs (nPGMs) show no orientation relationship with the host sulfide mineral. Consequently, they are discrete phases, which were trapped within pentlandite during sulfide growth. Heterogeneous and patchy distributions of Rh and Ir within the pentlandite lattice suggest that Rh and Ir were already present within the sulfide liquid. The absence of possible reaction partners (e.g., Bi, As, and Sn) necessary for the formation of discrete PGMs forced Rh and Ir to remain in the crystal lattice of pentlandite and down-temperature exsolution caused patchy distribution patterns of Rh and Ir. High concentrations of Rh and Ir in pentlandite initiate ordering of the randomly distributed PGE in form of nanometer-sized lamellae resulting in the formation of a superlattice. Palladium is homogenously distributed within the pentlandite lattice, even at high Pd concentrations, and in addition also occurs as nPGMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754

    Article  Google Scholar 

  • Barnes S-J, Maier WD (2002) Platinum-group element distributions in the Rustenburg Layered Suite of the Bushveld Complex, South Africa. In Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements, Special Volume 54 Canadian Institute of Mining, Metallurgy and Petroleum pp 431–458

  • Barnes S-J, Van Achterbergh E, Makovicky E, Li C (2001) Proton microprobe results of partitioning of platinum-group elements between monosulphide solid solution and sulphide liquid. S Afr J Geol 104:275–286

    Article  Google Scholar 

  • Barrett C, Massalski TB (1980) Structure of Metals. International Series on Materials Science and Technology, Oxford

    Google Scholar 

  • Baumgartner J, Dey A, Bomans PHH, Le Coadou C, Frantzl P, Sommerdijk NAJM, Faivre D (2013) Nucleation and growth of magnetite from solution. Nat Mater 12:310–314

    Article  Google Scholar 

  • Cabri LJ (1988) Applications of proton and nuclear microprobes in ore deposit mineralogy and metallurgy. Nucl Instr Methods Phys Res 30:459–465

    Article  Google Scholar 

  • Cabri LJ (2013) Nanometer-sized platinum-group minerals (PGM) in base metal sulfides: new evidence for an orthomagmatic origin of the Merensky Reef PGE ore deposit, Bushveld Complex, South Africa: Discussion. Can Mineral 49:817–819

    Google Scholar 

  • Cabri LJ, Laflamme JHG (1981) Analyses of minerals containing platinum-group elements. In Cabri LJ (ed) Platinum-group elements: mineralogy, geology, recovery, CIM Special Volume 23, pp 151–173, 2nd edition reprinted 1989

  • Cabri LJ, Blank H, El Goresy A, Laflamme JHG, Nobiling R, Sizgoric MB, Traxel K (1984) Quantitative trace-element analyses of sulfides from Sudbury and Stillwater by proton microprobe. Can Mineral 22:521–542

    Google Scholar 

  • Cabri LJ, Chryssoulis SL, De Villiers JPR, Laflamme JHG, Buseck PR (1989) The nature of “invisible” gold in arsenopyrite. Can Min 27:353–362

    Google Scholar 

  • Campbell IH, Naldrett AJ, Barnes S-J (1983) A model for the origin of the platinum-rich sulfide horizons in the Bushveld and Stillwater Complexes. J Petrol 24:133–165

    Article  Google Scholar 

  • Cawthorn RG (2011) Geological investigations from the PGE distribution in the Bushveld Merensky and UG2 chromite reefs. J S Afr I Min Metall 111:67–79

    Google Scholar 

  • Ciobanu CL, Cook NJ, Utsunomiya S, Pring A, Green L (2011) Focussed ion beam-transmission electron microscopy application in ore mineralogy: bridging micro- and nanoscale observations. Ore Geol Rev 42:6–31

    Article  Google Scholar 

  • Evans RC (1966) An introduction to crystal chemistry. University Printing Home, Cambridge

    Google Scholar 

  • Gebauer D, Volkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322:1819–1822

    Article  Google Scholar 

  • Genkin AD, Bortnikov NS, Cabri LJ, Wagner FE, Stanley CJ, Safonov YG, McHahon G, Friedl J, Kerzin AL, Gamyanin GN (1998) A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation. Econ Geol 93:463–487

    Article  Google Scholar 

  • Gervilla F, Cabri LJ, Kojonen K, Oberthür T, Weiser T, Johanson B, Sie SH, Campbell JL, Teesdale WJ, Laflamme JHG (2004) Platinum-group element distribution in some ore deposits: results of EPMA and Micro-PIXE analyses. Microchim Acta 147:167–173

    Article  Google Scholar 

  • Godel B, Barnes S-J, Maier WD (2007) Platinum-Group elements in sulphide minerals, platinum-group minerals, and whole-rocks of the Merensky Reef (Bushveld Complex, South Africa): implications for the formation of the reef. J Petrol 48:1569–1604

    Article  Google Scholar 

  • Goldschmidt VM (1926) Geochemische Verteilungsgesetze der Elemente – VII Die Gesetze der Kristallochemie. Skrifter utgitt av det Norske Videnskaps Akademi i Oslo, 1: Matematisk - naturvidenskapelig klasse, University of Oslo

  • Grokhovskaya TL, Lapina MI, Ganin VA, Grinevich NG (2005) PGE mineralization in the Burakovsk Layered Complex, Southern Karelia, Russia. Geol Ore Deposits 47:283–308

    Google Scholar 

  • Hatton CJ, Von Gruenewaldt G (1987) The geological setting and petrogenesis of the Bushveld chromitite layers. In: Stowe CW (ed) Evolution of Chromium Ore Fields. Van Nostrand Reinhold, United States of America

    Google Scholar 

  • Helmy H, Ballhaus C, Wirth R (2013) Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts. Nat Commun 4:1–7

    Article  Google Scholar 

  • Hiemstra SA (1979) The role of collectors in the formation of platinum deposits in the Bushveld. Can Mineral 17:469–482

    Google Scholar 

  • Hiemstra SA (1985) The distribution of some platinum-group elements in the UG-2 chromitite layer of the Bushveld Complex. Econ Geol 80:944–957

    Article  Google Scholar 

  • Hiemstra SA (1986) The distribution of chalcophile and platinum-group elements in the UG-2 chromitite layer of the Bushveld Complex. Econ Geol 81:1080–1086

    Article  Google Scholar 

  • Holwell DA, McDonald I (2007) Distribution of platinum-group elements in the Platreef at Overysel, northern Bushveld Complex: a combined PGM and LA-ICP-MS study. Contrib Mineral Petr 154:171–190

    Article  Google Scholar 

  • Holwell DA, McDonald I (2010) A review of the behavior of platinum group elements within natural magmatic sulfide ore systems. Platin Met Rev 54:26–36

    Article  Google Scholar 

  • Holwell DA, McDonald I, Armitage PEB (2006) Platinum-group mineral assemblages in the Platreef at the Sandsloot Mine, northern Bushveld Complex, South Africa. Mineral Mag 70:83–101

    Article  Google Scholar 

  • Hutchinson D, McDonald I (2008) Laser ablation ICP-MS study of platinum-group elements in sulphides from the Platreef at Turfspruit, northern limb of the Bushveld Complex, South Africa. Miner Depos 43:695–711

    Article  Google Scholar 

  • Johansson CH, Linde JO (1925) Röntgenographische Bestimmung der Atomanordnung in den Mischkristallreihen Au-Cu und Pd-Cu. Ann Phys 383:439–460

    Article  Google Scholar 

  • Junge M, Oberthür T, Melcher F (2014) Cryptic variation of chromite chemistry, platinum-group element and platinum-group mineral distribution in the UG-2 chromitite: an example from the Karee Mine, western Bushveld Complex, South Africa. Econ Geol 109:795–810

    Article  Google Scholar 

  • Kinloch ED (1982) Regional trends in the platinum-group mineralogy of the critical zone of the Bushveld Complex, South Africa. Econ Geol 77:1328–1347

    Article  Google Scholar 

  • Kinnaird JA, McDonald I (2005) An introduction to mineralization in the northern limb of the Bushveld Complex. Appl Earth Sci (Trans Inst Min Metall B) 114:B194–B198

    Article  Google Scholar 

  • Kozyrev SM, Komarova MZ, Emelina LN, Oleshkevich OI, Yakovleva OA, Lyalimov DM, Maximov VI (2002) The mineralogy and behavior of PGM during processing of the Noril’sk-Talnakh PGE-Cu-Ni ores. In Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements, Special Volume 54 Canadian Institute of Mining, Metallurgy and Petroleum pp 757–791

  • Kuhlmann G, Oberthür T, Melcher F, Lodziak J, (2006) UG2 Chromitithorizont – Mineralogisch-Geochemische Feinstratigraphie, Schwerpunkt Platinmetall-Verteilung. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Internal Report Tgb.-Nr. 11327/06

  • Lee CA (1996) A review of mineralization in the bushveld complex and some other layered intrusions. In Cawthorn RG (ed) Layered Intrusions. Elsevier, pp. 103–145

  • Li C, Barnes S-J, Makovicky E, Rose-Hansen J, Makovicky M (1996) Partitioning of nickel, copper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid: Effects of composition and temperature. Geochm Cosmochim Ac 60:1231–1238

    Article  Google Scholar 

  • Manyeruke TD, Maier WD, Barnes S-J (2005) Major and trace element geochemistry of the Platreef on the farm Townlands, northern Bushveld Complex. S Afr J Geol 108:381–396

    Article  Google Scholar 

  • McDonald I, Holwell D (2011) Geology of the northern Bushveld Complex and the setting and genesis of the Platreef Ni-Cu-PGE deposit. In: Li C, Ripley E (eds) Magamtic Ni-Cu and PGE deposits: geology, geochemistry, and genesis, vol 17, Rev Econ Geol. v., pp 297–327

    Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McLaren CH, De Villiers JPR (1982) The platinum-group chemistry and mineralogy of the UG-2 chromitite layer of the Bushveld Complex. Econ Geol 77:1348–1366

    Article  Google Scholar 

  • Merkle RKW (1992) Platinum-group minerals in the middle group of chromitite layers at Marikana, western Bushveld Complex: indications for collection mechanism and postmagmatic modification. Can J Earth Sci 29:209–221

    Article  Google Scholar 

  • Mostert AB, Hofmeyr PK, Potgieter GA (1982) The platinum-group mineralogy of the Merensky Reef at Impala Platinum Mines, Bophutatswana. Econ Geol 77:1385–1394

    Article  Google Scholar 

  • Mungall J, Naldrett AJ (2008) Ore deposits of the platinum-group elements. Elements 4:253–258

    Article  Google Scholar 

  • Mungall J, Andrews D, Cabri L, Sylvester P, Tubrett M (2005) Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfie melt under controlled oxygen and sulfur fugacity. Geochm Cosmochim Ac 69:4349–4360

    Article  Google Scholar 

  • Naldrett AJ (2004) Magmatic Sulfide Deposits. Springer, Heidelberg

    Book  Google Scholar 

  • Naldrett AJ, Hoffman EL, Green AH, Chou C-L, Naldrett SR (1979) The composition of Ni-sulfide ores, with particular reference to their content of PGE and Au. Can Mineral 17:403–415

    Google Scholar 

  • Navrotsky A (2004) Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. Proc Natl Acad Sci 101:12096–12101

    Article  Google Scholar 

  • Oberthür T, Cabri LJ, Weiser T, McMahon G, Müller P (1997a) Pt, Pd and other trace elements in sulfides of the Main Sulfide Zone, Great Dyke, Zimbabwe—a reconnaissance study. Can Mineral 35:597–609

    Google Scholar 

  • Oberthür T, Weiser T, Amanor JA, Chryssoulis SL (1997b) Mineralogical siting and distribution of gold in quartz veins and sulfide ores of the Ashanti mine and other deposits in the Ashanti belt of Ghana: genetic implications. Miner Depos 32:2–15

    Article  Google Scholar 

  • Oberthür T, Weiser T, Gast L, Kojonen K (2003) Geochemistry and mineralogy of platinum-group elements at Hartley Platinum Mine, Zimbabwe. Miner Depos 38:327–343

    Google Scholar 

  • Osbahr I, Klemd R, Oberthür T, Brätz H, Schouwstra R (2013) Platinum-group element distribution in base-metal sulfides of the Merensky Reef from the eastern and western Bushveld Complex, South Africa. Miner Depos 48:211–232

    Article  Google Scholar 

  • Osbahr I, Oberthür T, Klemd R, Josties A (2014) Platinum-group element distribution in base-metal sulfides of the UG2 chromitite, Bushveld Complex, South Africa—a reconnaissance study. Miner Depos 49:655–665

    Article  Google Scholar 

  • Penberthy CJ, Merkle RKW (1999) Lateral variations in the platinum-group element content and mineralogy of the UG2 Chromitite Layer, Bushveld Complex. S Afr J Geol 102:240–250

    Google Scholar 

  • Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971

    Article  Google Scholar 

  • Pouget EM, Bomans PHH, Goosl JACM, Frederik PM, de With G, Sommerdijk NAJM (2009) The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323:1455–1458

    Article  Google Scholar 

  • Rajamani V, Prewitt CT (1973) Crystal chemistry of natural pentlandites. Can Mineral 60:39–48

    Google Scholar 

  • Rajamani V, Prewitt CT (1975) Thermal expansion of the pentlandite structure. Am Mineral 60:39–48

    Google Scholar 

  • Schouwstra R, Kinloch E, Lee C (2000) A short review of the Bushveld Complex. Platin Miner Rev 44:33–39

    Google Scholar 

  • Scoates JS, Friedman RM (2008) Precise age of the platiniferous Merensky Reef, Bushveld Complex, South Africa, by the U-Pb Zircon chemical abrasion ID-TIMS technique. Econ Geol 103:465–471

    Article  Google Scholar 

  • Scoon RN, Teigler B (1994) Platinum-group element mineralization in the critical zone of the Western Bushveld Complex: I. Sulfide Poor-Chromitites below the UG-2. Econ Geol 89:1094–1121

    Article  Google Scholar 

  • Shannon RD (1976) Revised Effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr 32:751–767

    Article  Google Scholar 

  • Subbotin VV, Korchagin AU, Savchenko EE (2012) Platinum mineralization of the Fedorova-Pana ore node: types of ores, mineral compositions and genetic features. Vestnick of the Kola Science Center of the Russian Academy of Sciences, Apatity, l:54–65 (in Russian)

  • Teng HH (2013) How ions and molecules organize to form crystals. Elements 9:189–194

    Article  Google Scholar 

  • Todd SG, Keith DW, Le Roy LW, Schissel DJ, Mann EL, Irvine TN (1982) The J-M platinum-palladium reef of the Stillwater Complex, Montana: I. Stratigraphy and petrology. Econ Geol 77:1454–1480

    Article  Google Scholar 

  • Toth RS, Sato H (1962) Long period superlattice Cu3Au II. J Appl Phys 33:3250–3256

    Article  Google Scholar 

  • Tredoux M, Lindsay NM, Davies G, McDonald I (1995) The fractionation of platinum-group elements in magmatic systems, with the suggestion of a novel causal mechanism. S Afr J Geol 98:157–167

    Google Scholar 

  • van Achterbergh E, Ryan CG, Griffin WL (2000) GLITTER (version 3.0, on-line interactive data reduction for LA-ICPMS). Maquarie research Ltd

  • Vermaak C (1995) The platinum-group metals—a global perspective. Mintek

  • Von Gruenewaldt G, Hatton CJ, Merkle RKW, Gain SB (1986) Platinum-group element-chromite associations in the Bushveld Complex. Econ Geol 81:1067–1079

    Article  Google Scholar 

  • Wirth R (2004) Focused ion beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876

    Article  Google Scholar 

  • Wirth R (2009) Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometer scale. Chem Geol 261:217–229

    Article  Google Scholar 

  • Wirth R, Reid D, Schreiber A (2013) Nanometer-sized platinum-group minerals (PGM) in base metal sulfides: new evidence for an orthomagmatic origin of the Merensky Reef PGE ore deposit, Bushveld Complex, South Africa. Can Mineral 51:143–155

    Article  Google Scholar 

Download references

Acknowledgments

Excellent polished sections were prepared by Peter Rendschmidt, SEM studies were kindly supported by Detlef Klosa, and electron probe microanalysis was ably performed by Jerzy Lodziak, Christian Wöhrl, and Simon Goldmann, all at the BGR in Hannover. Many thanks to Helene Brätz, University of Erlangen, for carrying out the LA-ICP-MS analyses. Thanks to Bernd Lehmann for his professional editorial handling. We are very grateful for the thorough and constructive review by Louis J. Cabri, which improved the quality of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Junge.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junge, M., Wirth, R., Oberthür, T. et al. Mineralogical siting of platinum-group elements in pentlandite from the Bushveld Complex, South Africa. Miner Deposita 50, 41–54 (2015). https://doi.org/10.1007/s00126-014-0561-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-014-0561-0

Keywords

Navigation