Skip to main content

Advertisement

Log in

Sediment and weathering control on the distribution of Paleozoic magmatic tin–tungsten mineralization

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The formation of major granite-hosted Sn and/or W deposits and lithium–cesium–tantalum (LCT) type pegmatites in the Acadian, Variscan, and Alleghanian orogenic belts of Europe and Atlantic Northern America involves weathering-related Sn and W enrichment in the sedimentary debris of the Cadomian magmatic arc and melting of these sedimentary source rocks during later tectonic events, followed by magmatic Sn and W enrichment. We suggest that within this, more than 3,000-km long late Paleozoic belt, large Sn and/or W deposits are only found in regions where later redeposition of the Sn–W-enriched weathered sediments, followed by tectonic accumulation, created large volumes of Sn–W-enriched sedimentary rocks. Melting of these packages occurred both during the formation of Pangea, when continental collision subjected these source rocks to high-grade metamorphism and anatexis, and during post-orogenic crustal extension and mantle upwelling. The uncoupling of source enrichment and source melting explains (i) the diachronous occurrence of tin granites and LCT pegmatites in this late Paleozoic orogenic belt, (ii) the occurrence of Sn and/or W mineralizations and LCT pegmatites on both sides of the Rheic suture, and (iii) the contrasting tectonic setting of Sn and/or W mineralizations within this belt. Source enrichment, sedimentary and tectonic accumulation of the source rocks, and heat input to mobilize metals from the source rocks are three unrelated requirements for the formation of Sn and/or W granites. They are the controlling features on the large scale. Whether a particular granite eventually generates a Sn and/or W deposit depends on local conditions related to source melting, melt extraction, and fractionation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avigad D, Sandler A, Kolodner K, Stern RJ, McWilliams M, Miller N, Beyth M (2005) Mass-production of Cambro–Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes: environmental implications. Earth Planet Sci Lett 240:818–826

    Article  Google Scholar 

  • Badanina EV, Syritso LF, Volkova EV, Thomas R, Trumbull RB (2010) Composition of Li–F granite melt and its evolution during the formation of the ore-bearing Orlovka Massif in Eastern Transbaikalia. Petrology 18:131–157

    Article  Google Scholar 

  • Bauluz B, Mayayo MJ, Fernandez-Nieto C, Gonzalez Lopez JM (2000) Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chem Geol 168:135–150

    Article  Google Scholar 

  • Beetsma JJ (1995) The late Proterozoic/Paleozoic and Hercynian crustal evolution of the Iberian Massif, Northern Portugal. Ph.D. thesis, Vrije University, Amsterdam

  • Bradley DC, McCauley A, Buchwaldt R, Shea EK, Bowring S (2012) Lithium-cesium-tantalum pegmatites through time, their orogenic context, and relationships to the supercontinent cycle. Geol Soc Am Abstr Programs 44(7):294

    Google Scholar 

  • Breiter K, Sokolová M, Sokol A (1991) Geochemical specialization of tin-bearing granitoid massifs of NW Bohemia. Miner Depos 26:298–306

    Article  Google Scholar 

  • Černý P (1992) Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Appl Geochem 7:393–416

    Article  Google Scholar 

  • Černý P (2005) REE-enriched granitic pegmatites. In: Linnen RL, Sampson IM (eds) Rare–Element Geochemistry and Mineral Deposits. Geol Soc Can Short Course Notes 17:175–199

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026

    Article  Google Scholar 

  • Černý P, London D, Novák M (2012) Granitic pegmatites as reflections of their sources. Elements 8:289–294

    Article  Google Scholar 

  • Chen Y, Clark AH, Farrar E, Wasteneys HAHP, Hodgson MJ, Bromley AV (1993) Diachronous and independent histories of plutonism and mineralization in the Cornubian Batholith, southwest England. J Geol Soc 150:1183–1191

    Article  Google Scholar 

  • Chesley JT, Halliday AN, Snee LW, Mezger K, Shepherd TJ, Scrivener RC (1993) Thermochronology of the Cornubian batholith in southwest England: implications for pluton emplacement and protracted hydrothermal mineralization. Geochim Cosmochim Acta 57:1817–1837

    Article  Google Scholar 

  • Clark C, Fitzsimmons ICW, Healy D (2011) How does the continental crust get really hot? Elements 7:235–240

    Article  Google Scholar 

  • Cuney M, Barbey P (2014) Uranium, rare metals, and granulite facies metamorphism. Geosci Front. doi:10.1016/j.gsf.2014.03.011

    Google Scholar 

  • Cuney M, Alexandrov P, Carlier L, de Veslud C, Cheilletz A, Raimbault L, Ruffet G, Scaillet S (2002) The timing of W-Sn-rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: the case of the Limousin area (Massif Central, France). Geol Soc Lond Spec Publ 204:213–228

    Article  Google Scholar 

  • Darbyshire DPF, Shepherd TJ (1994) Nd and Sr isotope constraints on the origin of the Cornubian batholith, SW England. J Geol Soc 151:795–802

    Article  Google Scholar 

  • De Wit MJ, Thiart C, Doucouré M, Wilsher W (1999) Scent of a supercontinent: Gondwana’s ores as chemical tracers—tin, tungsten, and the Neoproterozoic Laurentia-Gondwana connection. J Afr Earth Sci 28:35–51

    Article  Google Scholar 

  • Dietrich A, Lehmann B, Wallianos A (2000) Bulk rock and melt inclusion geochemistry of Bolivian tin porphyry systems. Econ Geol 95:313–326

    Article  Google Scholar 

  • Drost K, Romer RL, Linnemann U, Kraft P, Fatka O, Marek J (2007) Nd-Sr-Pb isotopic signatures of Neoproterozoic—early paleozoic siliciclastic rocks in response to changing geotectonic regimes: a case study from the Barrandian area (Bohemian Massif, Czech Republic). In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geol Soc Am Spec Pap 423:191–208

  • Edmond JM, Huh Y (1997) Chemical weathering yields from basement and orogenic terrains in hot and cold climates. In: Ruddiman WF (ed) Tectonic uplift and climate change. Springer, New York, pp 329–351

    Chapter  Google Scholar 

  • Falk F, Hahne K, Lützner H, Gehmlich M (2000) Der Beginn siliziklastischer Sedimentation im Altpaläozoikum des Saxothuringikums: Sedimentologie und Geochemie des Richtprofils Goldisthal (Thüringisches Schiefergebirge). Z Dt Geol Ges 151:365–414

    Google Scholar 

  • Förster H-J, Romer RL (2010) Carboniferous magmatism. In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia – From the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 287–308

    Google Scholar 

  • Förster H-J, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge (Germany). J Petrol 40:1613–1645

    Article  Google Scholar 

  • Gasquet D, Leterrier J, Mrini Z, Vidal P (1992) Petrogenesis of the Hercynian Tichka plutonic complex (Western High Atlas, Morocco): trace element and Rb–Sr and Sm–Nd isotopic constraints. Earth Planet Sci Lett 108:29–44

    Article  Google Scholar 

  • Hahne K, Naumann R (2006) Mineralogisch-geochemisches Normalprofil für das Silur des Saxothuringikums. In: Heuse T, Leonhardt D (eds) Stratigraphie von Deutschland VII, Silur. Schr Dt Ges Geowiss 46:153–16

  • Hampton CM, Taylor PN (1983) The age and nature of the basement of southern Britain: evidence from Sr and Pb isotopes in granites. J Geol Soc 140:499–509

    Article  Google Scholar 

  • Johnsson MJ, Stallard RF (1989) Physiographic controls on the composition of sediments derived from volcanic and sedimentary terrains on Barro Colorado Island, Panama. J Sediment Res 59:768–781

    Article  Google Scholar 

  • Kempe U, Bombach K, Matukov D, Schlothauer T, Hutschenreuter J, Wolf D, Sergeev S (2004) Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralisation in the Eibenstock granite, Erzgebirge, Germany: Considering effects of zircon alteration. Miner Depos 39:646–669

    Article  Google Scholar 

  • Kohút M, Stein H (2005) Re–Os molybdenite dating of granite-related Sn–W–Mo mineralisation at Hnilec, Gemeric Superunit, Slovakia. Mineral Petrol 85:117–129

    Article  Google Scholar 

  • Kontak DJ (1990) The East Kemptville topaz–muscovite leucogranite, Nova Scotia I. Geological setting and whole-rock geochemistry. Can Mineral 28:787–825

    Google Scholar 

  • Kontak DJ, Farrar E, McBride S, Martin RF (1995) Mineral chemistry and 40Ar/39Ar dating of muscovite from the East Kemptville leucogranite, southern Nova Scotia: evidence for localized resetting of 40Ar/39Ar systematics in a shear zone. Can Mineral 33:1237–1253

    Google Scholar 

  • Kontak DJ, Creaser RA, Heaman LM, Archibald DA (2005) U–Pb tantalite, Re–Os molybdenite, and 40Ar/39Ar muscovite dating of the Brazil Lake pegmatite, Nova Scotia: a possible shear-zone related origin for an LCT-type pegmatite. Atlantic Geol 41:17–29

    Google Scholar 

  • Kronberg BI, Fyfe WS, McKinnon BJ, Couston BJ, Stilianidi Filho B, Nash RA (1982) Model for bauxite formation: Paragominas (Brazil). Chem Geol 35:311–320

    Article  Google Scholar 

  • Kroner U, Romer RL (2010) The Saxo-Thuringian Zone—tip of the Armorican Spur and part of the Gondwana plate. In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia – From the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 371–394

    Google Scholar 

  • Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogen revisited. Gondwana Res 24:298–329

    Article  Google Scholar 

  • Kroner U, Hahn T, Romer RL, Linnemann U (2007) The Variscan orogeny in the Saxo-Thuringian Zone—heterogeneous overprint of Cadomian/Palaeozoic Peri-Gondwana crust. Geol Soc Am Spec Pap 423:153–172

    Google Scholar 

  • Küster D, Romer RL, Tolessa D, Zerihun D, Bheemalingeswara K, Melcher F, Oberthür T (2009) The Kenticha rare-element pegmatite, Ethiopia: internal differentiation, U-Pb age and Ta mineralization. Miner Depos 44:723–750

    Article  Google Scholar 

  • Kydonakis K, Kostopoulos D, Poujol M, Brun J-P, Papanikolaou D, Paquette J-L (2014) The dispersal of the Gondwana super-fan system in the eastern Mediterranean: new insights from detrital zircon geochronology. Gondwana Res 23:1230–1241

    Article  Google Scholar 

  • Landes KK (1935) Age and distribution of pegmatites. Am Mineral 20:81–105 and 153–175

  • Lehmann B (1982) Metallogeny of tin: Magmatic differentiation versus geochemical heritage. Econ Geol 77:50–59

    Article  Google Scholar 

  • Lehmann B (1987) Tin granites, geochemical heritage, magmatic differentiation. Geol Rundsch 76:177–185

    Article  Google Scholar 

  • Lehmann B, Mahawat C (1989) Metallogeny of tin in central Thailand: a genetic concept. Geology 17:426–429

    Article  Google Scholar 

  • Linnemann U, Romer RL (2002) The Cadomian orogeny in Saxo-Thuringia, Germany: geochemical and Nd-Sr-Pb isotopic characterization of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics 352:33–64

    Article  Google Scholar 

  • Linnemann U, Gehmlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lützner H, Bombach K, (2000) From Cadomian subduction to Early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). In: Franke W, Haak V, Oncken O, Tanner D. (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geol Soc London Spec Publ 179:131–153

  • Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci 93:683–705

    Article  Google Scholar 

  • Linnemann U, Herbosch A, Liégeois J-P, Pin C, Gärtner A, Hofmann M (2012) The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: a review with new zircon ages, geochemistry, Sm–Nd isotopes, stratigraphy and palaeogeography. Earth-Sci Rev 112:126–154

    Article  Google Scholar 

  • Linnen RL, Cuney M (2005) Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen RL, Samson IM (eds) Rare-element geochemistry and mineral deposits. Geol Assoc Can Short Course Notes 17:45–67

  • London D, Morgan GB, Acosta-Vigil A (2012) Experimental simulations of anatexis and assimilation involving metapelite and granitic melt. Lithos 153:292–307

    Article  Google Scholar 

  • Maaß I, Hahne K, Loos G, Vogler P (1986) Isotopen- und elementgeochemische Untersuchungen an schwach metamorphen Sedimenten als Hilfsmittel zur faziellen und stratigraphischen Einordnung. Isotopenpraxis 22:131–135

    Google Scholar 

  • Marignac C, Cuney M (1999) Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt. Mineral Deposita 34:472–504

    Article  Google Scholar 

  • McCauley A, Bradley DC (2011) Age distribution of lithium-cesium-tantalum enriched pegmatites and relationships to orogeny. AGU Fall meeting, abstr. #V13B-2600

  • Meinhold G, Morton AC, Avigad D (2013) New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U–Pb ages. Gondwana Res 23:661–665

    Article  Google Scholar 

  • Melleton J, Gloaguen E, Frei D, Novák M, Breiter K (2012) How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian massif, Czech Republic? Can Mineral 50:1751–1773

    Article  Google Scholar 

  • Mingram B (1996) Geochemische Signaturen der Metasedimente des erzgebirgischen Krustenstapels. Sci. Tech. Rep., STR96/04, GeoForschungsZentrum Potsdam

  • Mingram B (1998) The Erzgebirge, Germany, a subducted part of northern Gondwana: geochemical evidence for repetition of early Palaeozoic metasedimentary sequences in metamorphic thrust units. Geol Mag 135:785–801

    Article  Google Scholar 

  • Mingram B, Rötzler K (1999) Geochemische, petrologische und geochronologische Untersuchungen im Erzgebirgskristallin – Rekonstruktion eines Krustenstapels. Schr Geowiss 9:1–72

    Google Scholar 

  • Montel JM, Marignac V, Barbey P, Pichavant M (1992) Thermobarometry and granite genesis: the Hercynian low-P, high-T Velay anatectic dome (French Massif Central). J Metamorph Geol 10:1–75

    Article  Google Scholar 

  • Müller A, Seltmann R, Halls C, Siebel W, Dulski P, Jeffries T, Spratt J, Kronz A (2006) The magmatic evolution of the land’s end pluton, Cornwall, and associated pre-enrichment of metals. Ore Geol Rev 28:329–367

    Article  Google Scholar 

  • Murphy JB, Keppie JD (2005) The Acadian Orogeny in the Northern Appalachians. Int Geol Rev 47:663–687

    Article  Google Scholar 

  • Murphy JB, Gutierrez-Alonso G, Nance RD, Fernandez-Suarez J, Keppie JD, Quesada C, Strachan RA, Dostal J (2006) Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34:325–328

    Article  Google Scholar 

  • Nabelek PI, Russ-Nabelek C, Denison JR (1992) The generation and crystallization conditions of the Proterozoic Harney Peak Leucogranite, Black Hills, South Dakota, USA: Petrologic and geochemical constraints. Contrib Mineral Petrol 110:173–191

    Article  Google Scholar 

  • Nägler TF, Schäfer H-J, Gebauer D (1995) Evolution of the Western European continental crust: implications from Nd and Pb isotopes in Iberian sediments. Chem Geol 121:345–357

    Article  Google Scholar 

  • Neiva AMR, Williams IS, Ramos JMF, Gomes MEP, Silva MMVG, Antunes IMHR (2009) Geochemical and isotopic constraints on the petrogenesis of Early Ordovician granodiorite and Variscan two-mica granites from the Gouveia area, central Portugal. Lithos 111:186–202

    Article  Google Scholar 

  • Neiva AMR, Williams IS, Lima SM, Teixeira RJS (2012) U–Pb and 39Ar/40Ar data constraining the ages of the source, emplacement and recrystallization/cooling events from late- to post-D3 Variscan granites of the Gouveia area, central Portugal. Lithos 153:72–83

    Article  Google Scholar 

  • Noblet C, Lefort JP (1990) Sedimentological evidence for a limited separation between Armorica and Gondwana during the Early Ordovician. Geology 18:303–306

    Article  Google Scholar 

  • Novák M (2005) Granitické pegmatity Českého masivu (Česká republika); minerlogická, geochemická a regionáliní klasifikace a geologický význam (Granitic pegmatites of the Bohemian Massif (Czech Republic); mineralogical, geochemical, and regional classification and geological significance. Acta Musei Moraviae Sci Geol 30:3–74

    Google Scholar 

  • Novák M, Černý P, Kimbrough DL, Taylor MC, Ercit TS (1998) U-Pb ages of monazite from granitic pegmatites in the Moldanubian Zone and their geological implications. Acta Univ Carol Geol 42:309–310

    Google Scholar 

  • Osberg PH, Tull JF, Robinson P, Hon R, Butler JR (1989) The Acadian Orogen In: Hatcher RD jr, Thomas WA, Viele GW (eds) The Appalachian-Ouachita orogen in the United States. Geol Soc Am, The Geology of North America, v. F-2:179–232

  • Raimbault L, Cuney M, Azencott C, Duthou JL, Joron JL (1995) Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Econ Geol 90:548–576

    Article  Google Scholar 

  • Robinson P, Tucker RD, Bradley D, Berry HN, Osberg PH (1998) Paleozoic orogens in New England, USA. GFF 120:119–148

    Article  Google Scholar 

  • Romer RL, Hahne K (2010) Life of the Rheic Ocean: Scrolling through the shale record. Gondwana Res 17:236–253

    Article  Google Scholar 

  • Romer RL, Thomas R, Stein HJ, Rhede D (2007) Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany. Miner Depos 42:337–359

    Article  Google Scholar 

  • Romer RL, Kirsch M, Kroner U (2011) Geochemical signature of Ordovician Mn-rich sedimentary rocks on the Avalonian shelf. Can J Earth Sci 48:703–718

  • Romer RL, Förster H-J, Hahne K (2012) Strontium isotopes—a persistent tracer for the recycling of Gondwana crust in the Variscan Orogen. Gondwana Res 22:262–278

    Article  Google Scholar 

  • Romer RL, Meixner A, Förster H-J (2014a) Lithium and boron in late-orogenic granites—isotopic fingerprints for the source of crustal melts? Geochim Cosmochim Acta 131:98–114

    Article  Google Scholar 

  • Romer RL, Meixner A, Hahne K (2014b) Lithium and boron isotopic composition of sedimentary rocks—the role of source history and depositional environment: a 250 Ma record from the Cadomian orogeny to the Variscan orogeny. Gondwana Res. doi:10.1016/j.gr.2013.08.015

    Google Scholar 

  • Rose AW, Hawkes HE, Webb JS (1979) Geochemistry in mineral exploration, 2nd edn. Academic, London, 657 pp

    Google Scholar 

  • Rötzler K, Plessen B (2010) The Erzgebirge: a pile of ultrahigh- to low-pressure nappes of Early Palaeozoic rocks and their Cadomian basement. In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia – From the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 253–270

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the Continental Crust. In: Rudnick RL (ed) Treatise on Geochemistry vol 3. Elsevier, Amsterdam, pp 1–64

    Chapter  Google Scholar 

  • Sadequi M, Bouabdellah M, Boushaba A, Marcoux E, Cheilletz A (2013) Mineralogy, fluid inclusion, and oxygen isotope constraints on the genesis of the Lalla Zahra W-(Cu) deposit, Alouana district, northeastern Morocco. Arab J Geosci 6:3067–3085

    Article  Google Scholar 

  • Schuiling RD (1967) Tin belts on the continents around the Atlantic Ocean. Econ Geol 62:540–550

    Article  Google Scholar 

  • Sevigny JH, Hanson GN (1993) Orogenic evolution of the New England Appalachians of southwestern Connecticut. Geol Soc Am Bull 105:1591–1605

    Article  Google Scholar 

  • Shail RK, Stuart FM, Wilkinson JJ, Boyce AJ (2003) The role of Post-Variscan extensional tectonics and mantle melting in the generation of lower Permian granites and the giant W–As–Sn–Cu–Zn–Pb orefield of SW England. Trans Inst Min Metall Sect B Appl Earth Sci 112:127–129

    Google Scholar 

  • Sinclair WD, Gonevchuk GA, Korostelev PG, Semenyak BI, Rodionov S, Seltmann R, Stemprock M (2011) World distribution of Tin and Tungsten Deposits. Geol Surv Can, Open File 5482, scale 1: 35 000 000. doi: 10.4095/287906

  • Stallard RF (1995) Tectonic, environmental, and human aspects of weathering and erosion: a global review using a steady-state perspective. Annu Rev Earth Planet Sci 23:11–39

    Article  Google Scholar 

  • Štemprok M (1995) A comparison of the Krušné Hory-Erzgebirge (Czech Republic – Germany) and Cornish (UK) granites and their related mineralizations. Proc Ussher Soc 8:347–356

    Google Scholar 

  • Stone M (1992) The Tregonning granite: petrogenesis of Li-mica granites in the Cornubian batholith. Min Mag 56:141–155

    Article  Google Scholar 

  • Stussi JM (1989) Granitoid chemistry and associated mineralization in the French Variscan. Econ Geol 84:1363–1381

    Article  Google Scholar 

  • Swanson SE, Veal WB (2010) Mineralogy and petrogenesis of pegmatites in the Spruce Pine District, North Carolina, USA. J Geosci 55:27–42

    Google Scholar 

  • Talavera C, Montero P, Martínez Poyatos D, Williams IS (2012) Ediacaran to Lower Ordovician age for rocks ascribed to the Schist–Graywacke Complex (Iberian Massif, Spain): Evidence from detrital zircon SHRIMP U–Pb geochronology. Gondwana Res 22:928–942

    Article  Google Scholar 

  • Taylor RP, Lux DR, Maclellan HE, Hubacher F (1987) Age and genesis of granite-related W-Sn-Mo mineral deposits, Burnthill, New Brunswick, Canada. Econ Geol 82:2187–2198

    Article  Google Scholar 

  • Thomas R, Förster H-J, Rickers K, Webster JD (2005) Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study. Contrib Mineral Petrol 148:582–601

    Article  Google Scholar 

  • Tomascak PB, Krogstad EJ, Walker RJ (1996) U–Pb monazite geochronology of granitic rocks from Maine: implications for late Paleozoic tectonics in the Northern Appalachians. J Geol 104:185–195

    Article  Google Scholar 

  • Valle-Aguado B, Azevedo MR, Schaltegger U, Martínez Catalán JR, Nolan J (2005) U-Pb zircon and monazite geochronology of Variscan magmatism related to synconvergence extension in Central Northern Portugal. Lithos 82:169–184

    Article  Google Scholar 

  • van Staal CR, Barr SM, Murphy JB (2012) Provenance and tectonic evolution of Ganderia: constraints on the evolution of the Iapetus and Rheic oceans. Geology 40:987–990

    Article  Google Scholar 

  • Waldron JWF, White CE, Barr SM, Simonetti A, Heaman LM (2009) Provenance of the Meguma terrane, Nova Scotia: rifted margin of early Paleozoic Gondwana. Can J Earth Sci 46:1–8

    Article  Google Scholar 

  • Waldron JWF, Schofield DI, White CE, Barr SM (2011) Cambrian successions of the Meguma Terrane, Nova Scotia, and Harlech Dome, North Wales: dispersed fragments of a peri-Gondwanan basin? J Geol Soc 168:83–98

    Article  Google Scholar 

  • White CE (2010) Compilation of geochemical and petrographic data from the western and southern parts of the Goldenville and Halifax groups, Nova Scotia. Nova Scotia Dept Nat Res, Open File Rept 2010–001, pp. 18

  • Wise MA, Brown CD (2010) Mineral chemistry, petrology and geochemistry of the Sebago granite–pegmatite system, southern Maine, USA. J Geosci 55:3–26

    Google Scholar 

  • Woodcock NH, Soper NJ, Strachan RA (2007) A Rheic cause for the Acadian deformation in Europe. J Geol Soc 164:1023–1036

    Article  Google Scholar 

  • Zhang KJ (2004) Secular geochemical variations of the Lower Cretaceous siliciclastic rocks from central Tibet (China) indicate a tectonic transition from continental collision to back-arc rifting. Earth Planet. Sci Lett 229:73–89

    Google Scholar 

Download references

Acknowledgments

We thank Lukáš Krmiček (Brno) for information on Czech Sn granites and rare-element pegmatites. We greatly appreciate constructive suggestions by two anonymous reviewers and thoughtful editorial handling by R.L. Linnen and G. Beaudoin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf L. Romer.

Additional information

Editorial handling: R. Linnen and G. Beaudoin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romer, R.L., Kroner, U. Sediment and weathering control on the distribution of Paleozoic magmatic tin–tungsten mineralization. Miner Deposita 50, 327–338 (2015). https://doi.org/10.1007/s00126-014-0540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-014-0540-5

Keywords

Navigation