Mineralium Deposita

, Volume 50, Issue 3, pp 265–279 | Cite as

Liquid immiscibility between arsenide and sulfide melts: evidence from a LA-ICP-MS study in magmatic deposits at Serranía de Ronda (Spain)

  • R. Piña
  • F. Gervilla
  • S.-J. Barnes
  • L. Ortega
  • R. Lunar


The chromite-Ni arsenide (Cr-Ni-As) and sulfide-graphite (S-G) deposits from the Serranía de Ronda (Málaga, South Spain) contain an arsenide assemblage (nickeline, maucherite and nickeliferous löllingite) that has been interpreted to represent an arsenide melt and a sulfide-graphite assemblage (pyrrhotite, pentlandite, chalcopyrite and graphite) that has been interpreted to represent a sulfide melt, both of which have been interpreted to have segregated as immiscible liquids from an arsenic-rich sulfide melt. We have determined the platinum-group element (PGE), Au, Ag, Se, Sb, Bi and Te contents of the arsenide and sulfide assemblages using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to establish their partitioning behaviour during the immiscibility of an arsenide melt from a sulfide melt. Previous experimental work has shown that PGE partition more strongly into arsenide melts than into sulfide melts and our results fit with this observation. Arsenide minerals are enriched in all PGE, but especially in elements with the strongest affinity for the arsenide melt, including Ir, Rh and Pt. In contrast and also in agreement with previous studies, Se and Ag partition preferentially into the sulfide assemblage. The PGE-depleted nature of sulfides in the S-G deposits along with the discordant morphologies of the bodies suggest that these sulfides are not mantle sulfides, but that they represent the crystallization product of a PGE-depleted sulfide melt due to the sequestering of PGE by an arsenide melt.


Arsenide melt Sulfide melt Liquid immiscibility Platinum-group elements LA-ICP-MS Ronda 



We are very grateful to Dany Savard (Université du Québec à Chicoutimi, Canada) for his assistance with the laser ablation analysis. We very much appreciate the comments from two anonymous reviewers and Associate Editor Michael Lesher, who significantly improved the manuscript. Editor Bernd Lehmann is acknowledged for his editorial input. This research was financed by the Spanish research project CGL2007-60266 and the Canada Research Chair in Magmatic Metallogeny. Rubén Piña’s stay at UQAC was financed with a “José Castillejo” travel aid financed by Spanish Ministry of Science.

Supplementary material

126_2014_534_MOESM1_ESM.xls (32 kb)
ESM 1 (XLS 31 kb)
126_2014_534_MOESM2_ESM.xls (38 kb)
ESM 2 (XLS 38 kb)
126_2014_534_MOESM3_ESM.xls (36 kb)
ESM 3 (XLS 36 kb)
126_2014_534_MOESM4_ESM.xls (38 kb)
ESM 4 (XLS 38 kb)


  1. Alard O, Griffin WL, Lorand JP, Jackson SE, O’Reilly SY (2000) Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407:891–894CrossRefGoogle Scholar
  2. Barnes S-J, Makovicky E, Karup-Moller S, Makovicky M, Rose-Hanson J (1997) Partition coefficients for Ni, Cu, Pd, Pt, Rh and Ir between monosulfide solid solution and sulphide liquid and the implications for the formation of compositionally zoned Ni-Cu sulphide bodies by fractional crystallization of sulphide liquid. Can J Earth Sci 34:366–374CrossRefGoogle Scholar
  3. Brenan JM, Finnigan CS, McDonough WF, Homolova V (2012) Experimental constraints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silicate melt: the importance of ferric iron. Chem Geol 302–303:16–32CrossRefGoogle Scholar
  4. Buseck PR (1963) The Fe-Ni-As system at 800 °C. Carnegie Inst Wash Yearb 62:200–210Google Scholar
  5. Crespo E, Luque FJ, Rodas M, Wada H, Gervilla F (2006) Graphite-sulfide deposits in Ronda and Beni Bousera peridotites (Spain and Morocco) and the origin of carbon in mantle-derived rocks. Gondwana Res 9:279–290CrossRefGoogle Scholar
  6. Dare SAS, Barnes SJ, Prichard HM, Fisher PC (2010) The timing and formation of platinum-group minerals from Creighton Ni-Cu-platinum-group element deposit, Sudbury, Canada: early crystallization of PGE-rich sulfarsenides. Econ Geol 105:1071–1096CrossRefGoogle Scholar
  7. Finnigan CS, Brenan JM, Mungall JE, McDonough WF (2008) Experiments and models bearing on the role of chromite as a collector of platinum-group minerals by local reduction. J Petrol 49:1647–1665CrossRefGoogle Scholar
  8. Fleet ME, Chryssoulis SL, Stone ES, Weisener CG (1993) Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system experiments on the fractional crystallization of sulfide melt. Contrib Mineral Petrol 115:36–44CrossRefGoogle Scholar
  9. Garrido CJ, Bodinier JL (1999) Diversity of mafic rocks in the Ronda peridotite: evidence for pervasive melt-rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. J Petrol 40:729–754CrossRefGoogle Scholar
  10. Gervilla F, Leblanc M (1990) Magmatic ores in high-temperature alpine-type lherzolite massifs (Ronda, Spain, and Beni Bousera, Morocco). Econ Geol 85:112–132CrossRefGoogle Scholar
  11. Gervilla F, Rønsbo J (1992) New data on (Ni, Fe, Co) diarsenides and sulpharsenides in chromite-niccolite ores from Málaga province, south Spain. N Jb Mineral 5:193–206Google Scholar
  12. Gervilla F, Makovicky E, Makovicky M, Rose-Hansen J (1994) The system Pd-Ni-As at 790 ° and 450 °C. Econ Geol 89:1630–1639CrossRefGoogle Scholar
  13. Gervilla F, Leblanc M, Torres-Ruiz J, Fenoll Hach-Alí P (1996) Immiscibility between arsenide and sulfide melts: a mechanism for the concentration of noble metals. Can Mineral 34:485–502Google Scholar
  14. Gervilla F, Sanchez-Anguita A, Acevedo RD, Hach-Ali PF (1997) Platinum-group element sulpharsenides and Pd bismuthotellurides in the metamorphosed Ni-Cu deposit at Las Aguilas (province of San Luis, Argentina). Mineral Mag 61:861–877CrossRefGoogle Scholar
  15. Gervilla F, Papunen H, Kojonen K, Johanson B (1998) Platinum-, palladium- and gold-rich arsenide ores from the Kylmäkoski Ni-Cu deposit (Vammala Nickel Belt, SW Finland). Mineral Petrol 64:163–185CrossRefGoogle Scholar
  16. Gervilla F, Gutiérrez-Narbona R, Fenoll-Hach-Alí P (2002) The origin of different types of magmatic mineralizations from small-volume melts in the lherzolite massifs of the Serranía de Ronda. Bol Soc Esp Mineral 25:79–96Google Scholar
  17. Godel B, González-Álvarez I, Barnes SJ, Barnes S-J, Parker P, Day J (2012) Sulfides and sulfarsenides from the Rosie nickel prospect, Duketon Greenstone Belt, Western Australia. Econ Geol 107:275–294CrossRefGoogle Scholar
  18. Hanley JJ (2007) The role of arsenic-rich melts and mineral phases in the development of high-grade Pt-Pd mineralization within komatiite-associated magmatic Ni-Cu sulfide horizons at Dundonald Beach South, Abitibi subprovince, Ontario, Canada. Econ Geol 102:305–317CrossRefGoogle Scholar
  19. Hattori K, Arai S, Clarke DB (2002) Selenium, tellurium, arsenic and antimony contents of primary mantle sulfides. Can Mineral 40:637–650CrossRefGoogle Scholar
  20. Helmy HM, Ballhaus C, Wohlgemuth-Ueewasser C, Fonseca R, Laurenz V (2010) Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt—application to magmatic sulfide deposits. Geochim Cosmochim Acta 74:6174–6179CrossRefGoogle Scholar
  21. Helmy HM, Ballhaus C, Fonseca ROC, Nagel TJ (2013) Fractionation of platinum, palladium, nickel, and copper in sulfide-arsenide systems at magmatic temperature. Contrib Mineral Petrol 166:1725–1737CrossRefGoogle Scholar
  22. Homolova V, Brenan JM, McDonough WF, Ash R (2008) Olivine- and spinel-silicate melt partitioning of Platinum Group Elements (PGEs) as a function of oxygen fugacity. Geological Association of Canada – Mineralogical Association of Canada, Abstract with program, p 74Google Scholar
  23. Hutchinson D, McDonald I (2008) Laser ablation ICP-MS study of platinum-group elements in sulphides from the Platreef at Turfspruit, northern limb of the Bushveld Complex, South Africa. Miner Deposita 43:695–711CrossRefGoogle Scholar
  24. Ishimaru S, Arai S (2008) Arsenide in a metasomatized peridotite xenolith as a constraint on arsenic behavior in the mantle wedge. Am Mineral 93:1061–1065CrossRefGoogle Scholar
  25. Leblanc M, Gervilla F, Jedwab J (1990) Noble metals segregation and fractionation in magmatic ores from Ronda and Beni Bousera lherzolite massifs (Spain, Morocco). Mineral Petrol 42:233–248CrossRefGoogle Scholar
  26. Lenoir X, Garrido CJ, Bodinier JL, Dautria JM, Gervilla F (2001) The recrystallization front of the Ronda peridotite: evidence for melting and thermal erosion of subcontinental lithosperic mantle beneath the Alborán Basin. J Petrol 42:141–158CrossRefGoogle Scholar
  27. Li C, Barnes S-J, Makovicky E, Rose-Hansen J, Makovicky M (1996) Partitioning of nickel, copper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid: effects of composition and temperature. Geochim Cosmochim Acta 60:1231–1238CrossRefGoogle Scholar
  28. Lorand JP (1987) Sur l’origine mantellaire de l’arsenic dans les roches du manteaux: exemple des pyroxénites à grenat du massif lherzolitique des beni bousera (Rif, maroc). CR Acad Sci Paris 305:383–386Google Scholar
  29. Lorand JP, Alard O (2001) Platinum-group element abundances in the upper mantle: new constraints from in-situ and whole rock analyses of Massif Central xenoliths (France). Geochim Cosmochim Acta 65:2789–2806CrossRefGoogle Scholar
  30. Lorand JP, Luguet A, Alard O (2013) Platinum-group element systematics and petrogenetic processing of the continental upper mantle: a review. Lithos 164–167:2–21CrossRefGoogle Scholar
  31. Makovicky E, Karup-Moller S, Makovicky M, Rose-Hansen J (1990) Experimental studies on the phase systems Fe-Ni-Pd-S and Fe-Pt-Pd-As-S applied to PGE deposits. Mineral Petrol 42:307–319CrossRefGoogle Scholar
  32. Makovicky M, Makovicky E, Rose-Hansen J (1992) The phase system Fe-Pt-As-S at 850 °C and 470 °C. N Jb Mineral 10:441–453Google Scholar
  33. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  34. McKenzie D (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95:53–72CrossRefGoogle Scholar
  35. Oen IS (1973) A peculiar type of Cr-Ni mineralization: cordierite, chromite-niccolite ores of Málaga, Spain, and their possible origin by liquid unmixing. Econ Geol 68:831–842CrossRefGoogle Scholar
  36. Oen IS, Kieft C, Westerhof AB (1979) Variation in composition of chromites from chromite-arsenide deposits in peridotites of Málaga, Spain. Econ Geol 74:1630–1636CrossRefGoogle Scholar
  37. Pagé P, Barnes SJ, Bédard JH, Zientek ML (2012) In situ determination of Os, Ir and Ru in chromites formed from komatiite, tholeiite and boninite magmas: implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation. Chem Geol 302–303:3–15CrossRefGoogle Scholar
  38. Papunen H (1989) Platinum-group elements in metamorphosed Ni-Cu deposits in Finland. In: Prendergast MJ, Jones MJ (eds). Magmatic sulfides, the Zimbabwe volume, Institution of Mining and Metallurgy, pp 165–176Google Scholar
  39. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualization and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518CrossRefGoogle Scholar
  40. Piña R, Gervilla F, Barnes SJ, Ortega L, Lunar R (2013) Partition coefficients of platinum-group and chalcophile elements between arsenide and sulfide phases as determined in the Amasined sulfide-graphite mineralization (Beni Bousera, North Morocco). Econ Geol 108:935–951CrossRefGoogle Scholar
  41. Platt JP, Whitehouse MJ, Kelley SP, Carter A, Hollick L (2003) Simultaneous extensional exhumation across the Alboran Basin: implications for the causes of late orogenic extension. Geology 31:251–254CrossRefGoogle Scholar
  42. Power MR, Pirrie D, Jedwab J, Stanley CJ (2004) Platinum-group element mineralization in an As-rich magmatic sulfide system, Talnotry, southwest Scotland. Mineral Mag 68:395–411CrossRefGoogle Scholar
  43. Puchtel IS, Humayun M, Campbell AJ, Sproule RA, Lesher CM (2004) Platinum-group element geochemistry of komatiites from the Alexo and Pyke Hill areas, Ontario, Canada. Geochim Cosmochim Acta 68:1361–1383CrossRefGoogle Scholar
  44. Reuber I, Michard A, Chalouan A, Juteau TA, Jermoumi B (1982) Structures and emplacement of the alpine-type peridotites from Beni Bousera, Rif, Morocco: a polyphase tectonic interpretation. Tectonophysics 82:231–254CrossRefGoogle Scholar
  45. Righter K, Campbell AJ, Humayun M, Hervig RL (2004) Partitioning of Ru, Rh, Ir and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochim Cosmochim Acta 68:867–880CrossRefGoogle Scholar
  46. Roseboom EH (1963) Co-Fe-Ni diarsenides composition and cell dimensions. Am Mineral 48:271–299Google Scholar
  47. Sinyakova EF, Kosyakov VI (2012) The behavior of noble-metal admixtures during fractional crystallization of As- and Co-containing Cu-Fe-Ni sulfide melts. Russ Geol Geophys 53:1055–1076CrossRefGoogle Scholar
  48. Tomkins AG (2010) Wetting facilitates late-stage segregation of precious metal-enriched sulfosalt melt in magmatic sulfide systems. Geology 38:951–954CrossRefGoogle Scholar
  49. Tomkins AG, Pattison DRM, Frost BR (2007) On the initiation of metamorphic sulfide anatexis. J Petrol 48:511–535CrossRefGoogle Scholar
  50. Torres-Ruíz J, Gervilla F, Leblanc M (1991) Mineralogía y comportamiento geoquímico del oro en los macizos lherzolíticos Bético-Rifeños (España-Marruecos). Estud Geol 47:281–293CrossRefGoogle Scholar
  51. Tubia JM, Cuevas J (1986) High-temperature emplacements of Los Reales peridotite nappe (Betic Cordillera, Spain). J Struct Geol 8:473–482CrossRefGoogle Scholar
  52. Van der Wal D, Bodinier JL (1996) Origin of the recrystallization front in the Ronda peridotite by km-scale pervasive porous melt flow. Contrib Mineral Petrol 122:387–405CrossRefGoogle Scholar
  53. Van der Wal D, Vissers RLM (1993) Uplift and emplacement of upper mantle rocks in the western Mediterranean. Geology 21:1119–1122CrossRefGoogle Scholar
  54. Vauchez A, Garrido C (2001) Seismic properties of an asthenospherized lithospheric mantle: constraints from the lattice preferred orientation of peridotite minerals in the Ronda massif. Earth Planet Spec Lett 192:235–249CrossRefGoogle Scholar
  55. Wilson SA, Ridley WI, Koenig AE (2002) Development of sulfide calibration standards for laser ablation inductively-coupled mass spectrometry technique. J Anal At Spectrom 17:406–409CrossRefGoogle Scholar
  56. Wood M (2003) Arsenic in igneous systems: an experimental investigation. Unpublished BA Sc thesis, University of Toronto, Toronto, Canada, p 32Google Scholar
  57. Yund RA (1961) Phase relations in the system Ni-As. Econ Geol 56:1273–1296CrossRefGoogle Scholar
  58. Zindler A, Staudiel M, Hart SR, Enders R, Goldstein S (1983) Nd and Sr isotope study of a mafic layer from Ronda ultramafic complex. Nature 304:226–230CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R. Piña
    • 1
  • F. Gervilla
    • 2
  • S.-J. Barnes
    • 3
  • L. Ortega
    • 1
  • R. Lunar
    • 1
    • 4
  1. 1.Departamento de Cristalografía y Mineralogía, Facultad de Ciencias GeológicasUniversidad Complutense de MadridMadridSpain
  2. 2.Departamento de Mineralogía y Petrología and Instituto Andaluz de Ciencias de la Tierra, Facultad de CienciasUniversidad de Granada-CSICGranadaSpain
  3. 3.Sciences de la TerreUniversité du Québec à ChicoutimiChicoutimiCanada
  4. 4.Instituto de Geociencias IGEO (UCM-CSIC)MadridSpain

Personalised recommendations