Advertisement

Mineralium Deposita

, Volume 49, Issue 4, pp 471–486 | Cite as

On the geological availability of germanium

  • Max Frenzel
  • Marina P. Ketris
  • Jens Gutzmer
Article

Abstract

Based on a detailed statistical analysis of chemical data published in the scientific literature, estimates were made of the minimum amounts of recoverable Ge contained within sulphidic zinc ores and coals, given current processing technologies. It is expected that at least 119 kt (∼7 kt in zinc ores and ∼112 kt in coal) of recoverable germanium exist within proven reserves (at present stage of knowledge) at grades in excess of 100 ppm in sphalerite and 200 ppm in coal, while at least 440 kt (∼50 kt in zinc ores and ∼390 kt in coal) should become recoverable in the future, being associated to coal reserves at 8–200 ppm Ge and zinc resources containing in excess of 100 ppm Ge in sphalerite. Mississippi Valley Type (MVT) deposits are expected to be the most important hosts of germanium-rich sphalerite, while both brown and hard coals are expected to be equally important as hosts of germanium. The approach taken in this publication shows that reliable minimum estimates for the availability of by-product metals lacking suitable reserve/resource data may be attained by using robust statistical methods and geochemical data published in the scientific literature

Keywords

Critical metals Resources Reserves Sphalerite Coal 

Notes

Acknowledgments

The authors would like to thank Dr. Raimon Tolosana-Delgado for valuable discussions which helped to significantly improve the manuscript. We are also indebted to Prof. Dr. F.-W. Wellmer, Dr. V. Melfos, and Prof. Dr. V. V. Seredin for their valuable reviews of the manuscript, and Prof. Dr. Ya. E. Yudovich.

Supplementary material

126_2013_506_MOESM1_ESM.pdf (170 kb)
Online Resource 1 A guide to the sphalerite database (.pdf) (PDF 169 kb)
126_2013_506_MOESM2_ESM.xls (464 kb)
Online Resource 2 The sphalerite database (.xls) (XLS 464 kb)
126_2013_506_MOESM3_ESM.xlsx (9.7 mb)
Online Resource 3 Sample simulation spread sheet (.xlsx) (XLSX 9957 kb)
126_2013_506_MOESM4_ESM.pdf (204 kb)
Online Resource 4 Germanium enrichment during the processing of thermal coals (.pdf) (PDF 204 kb)

References

  1. Angerer G, Erdmann L, Markscheider-Weidemann F, Scharp M, Lüllmann A, Handke V, Marwede M (2009) Rohstoffe für Zukunftstechnologien. Einfluss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnachfrage, 2nd edn. Fraunhofer IRB Verlag, StuttgartGoogle Scholar
  2. Bernstein LR (1985) Germanium geochemistry and mineralogy. Geochim Cosmochim Acta 49:2409–2422. doi: 10.1016/0016-7037(85)90241-8 CrossRefGoogle Scholar
  3. Bernstein LR (1986) Geology and mineralogy of the Apex germanium-gallium mine, Washington County. USGS Bulletin, Utah, 1577Google Scholar
  4. Brownfield ME, Steinshouser DW, Povarennykh MYu, Eriomin I, Shpirt M, Meitov Ye, Sharova I, Goriunova N, Zyrianova MV (2001) Coal quality and resources of the former Soviet Union – An ArcView project. USGS Open File Report 01–104Google Scholar
  5. Buchanan GH (1916) The occurrence of germanium in zinc materials. J Ind Eng Chem 8:585–586. doi: 10.1021/i500007a002 CrossRefGoogle Scholar
  6. Buchanan GH (1917) The Occurrence of Germanium in Missouri and Wisconsin Blendes. J Ind Eng Chem 9:661–663. doi: 10.1021/ie50091a015 CrossRefGoogle Scholar
  7. Burnham CW (1959) Metallogenic provinces of the Southwestern United States and Northern Mexico. New Mexico Bureau of Mines and Mineral Resources Bulletin 65Google Scholar
  8. Cerny I, Schroll E (1995) Heimische Vorräte an Spezialmetallen (Ga, In, Tl, Ge, Se, Te und Cd) in Blei-Zink- und anderen Erzen. Arch f Lagerst Forsch Geol B-A 18:5–33Google Scholar
  9. Chatterjee AK (1979) Geology of the Meat Cove zinc deposit, Cape Breton Island, Nova Scotia. Nova Scot Dep Mine Paper 79(3):1–27Google Scholar
  10. Commission E (2010) Critical raw materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials. Brussels, BelgiumGoogle Scholar
  11. Council WE (2010) 2010 Survey of energy resources. World Energy Council, London, 608 ppGoogle Scholar
  12. Cox DP, Singer DA (1986) Mineral deposit models. USGS Bulletin 1693Google Scholar
  13. Dennis LM, Papish J (1921) Germanium I. Extraction from germanium-bearing zinc oxide. Non-occurrence in samarskite. J Am Chem Soc 43:2131–2143. doi: 10.1021/ja01443a001 CrossRefGoogle Scholar
  14. Du G, Zhuang X, Querol X, Izquierdo M, Alastuey A, Moreno T, Font O (2009) Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China. Int J Coal Geol 78:16–26. doi: 10.1016/j.coal.2008.10.004 CrossRefGoogle Scholar
  15. Dutrizac JE, Jambor JL, Chen TT (1986) Host minerals for the gallium-germanium ores of the Apex Mine, Utah. Econ Geol 81:946–950. doi: 10.2113/gsecongeo.81.4.946 CrossRefGoogle Scholar
  16. Dutrizac J, Chen T, Longton R (1996) The mineralogical deportment of germanium in the Clarksville Electrolytic Zinc Plant of Savage Zinc Inc. Metall Mater Trans B 27:567–576. doi: 10.1007/bf02915654 CrossRefGoogle Scholar
  17. Elsner H, Melcher F, Schwarz-Schampera U, Buchholz P (2010) Elektronikmetalle – zukünftig steigender Bedarf bei unzureichender Versorgungslage? Commod Top News 33:1–13Google Scholar
  18. Eremin N, Sergeeva N, Dergachev A (2007) Rare minerals from massive sulfide ores: Typomorphic features and geochemical trend. Mosc Univ Geol Bull 62:98–106. doi: 10.3103/s0145875207020044 CrossRefGoogle Scholar
  19. Fleischer M (1955) Minor elements in some sulfide minerals. In: Bateman AM (ed) Economic Geology 50th Anniversary Volume. Economic Geology Publishing Company. pp 970–1024Google Scholar
  20. Fleischer M (1961) Germanium content of enargite and other copper sulfide minerals. USGS Prof Pap 424-B:259–261Google Scholar
  21. Font O, Querol X, Huggins FE, Chimenos JM, Fernandez AI, Burgos S, Pena FG (2005a) Speciation of major and selected trace elements in IGCC fly ash. Fuel 11:1364–1371CrossRefGoogle Scholar
  22. Font O, Querol X, Lopez-Soler A, Chimenos JM, Fernandez AI, Burgos S, Pena FG (2005b) Ge extraction from gasification fly ash. Fuel 11:1384–1392CrossRefGoogle Scholar
  23. Fryklund VC, Fletcher JD (1956) Geochemistry of sphalerite from the Star Mine, Coeur d’Alene district, Idaho. Econ Geol 51:223–247. doi: 10.2113/gsecongeo.51.3.223 CrossRefGoogle Scholar
  24. Gluskoter HJ, Ruch RR, Miller WG, Cahill RA, Dreher GB, Kuhn JK (1977) Trace elements in coal: occurrence and distribution. Illinois State Geological Survey Circular 499Google Scholar
  25. Goldschmidt VM (1908) Über Argyrodit aus Bolivia. Z Krist Mineral 45:548–554Google Scholar
  26. Goldschmidt VM (1926) Über das krystallochemische und geochemische Verhalten des Germaniums. Naturwissenschaften 14:295–297. doi: 10.1007/bf01503585 CrossRefGoogle Scholar
  27. Goldschmidt VM (1930) Über das Vorkommen des Germaniums in Steinkohlen und Steinkohlen-Produkten. Nachr Ges Wiss Gött, Math-Phys Kl:398–401Google Scholar
  28. Goldschmidt VM (1935) Rare Elements in Coal Ashes. Ind Eng Chem 27:1100–1102. doi: 10.1021/ie50309a032 CrossRefGoogle Scholar
  29. Graton LC, Harcourt GA (1935) Spectrographic evidence on origin of ores of Mississippi Valley type. Econ Geol 30:800–824. doi: 10.2113/gsecongeo.30.7.800 CrossRefGoogle Scholar
  30. Guberman DE (2010) Germanium. U.S. Geological Survey Mineral commodity summaries 2010. Washington DCGoogle Scholar
  31. Guberman DE (2011a) Germanium. U.S. Geological Survey Mineral commodity summaries 2011. Washington DCGoogle Scholar
  32. Guberman DE (2011b) Germanium. In: U.S. Geological Survey Minerals yearbook 2011, v. I. Washington DCGoogle Scholar
  33. Guberman DE (2012) Germanium. U.S. Geological Survey Mineral commodity summaries 2012. Washington DCGoogle Scholar
  34. Guberman DE (2013) Germanium. U.S. Geological Survey Mineral commodity summaries 2013. Washington DCGoogle Scholar
  35. Hallam A, Payne KW (1958) Germanium Enrichment in Lignites from the Lower Lias of Dorset. Nature 181:1008–1009CrossRefGoogle Scholar
  36. Harbuck DD (1992) Gallium and Germanium Recovery from domestic sources. U. S. Bureau of Mines Report of Investigation 9419Google Scholar
  37. Höll R, Kling M, Schroll E (2007) Metallogenesis of germanium—A review. Ore Geol Rev 30:145–180. doi: 10.1016/j.oregeorev.2005.07.034 CrossRefGoogle Scholar
  38. Hörmann PK (1963) Zur Geochemie des Germaniums. Geochim Cosmochim Acta 8:861–876CrossRefGoogle Scholar
  39. Howes EA, Lees B (1955) The occurrence and recovery of germanium in large water-tube boilers. J Inst Fuel 28:298–299Google Scholar
  40. Hu R, Bi X, Ye Z, Su W (1996) The genesis of Lincang germanium deposit — A preliminary investigation. Chin J Geochem 15:44–50. doi: 10.1007/bf03166795 CrossRefGoogle Scholar
  41. Hu RZ, Qi HW, Zhou MF, Su WC, Bi XW, Peng JT, Zhong H (2009) Geological and geochemical constraints on the origin of the giant Lincang coal seam-hosted germanium deposit, Yunnan, SW China: A review. Ore Geol Rev 36:221–234Google Scholar
  42. Intiomale MM, Oosterbosch R (1974) Geologie et geochimie du gisement de Kipushi, Zaire. In: Bartholomé P (ed) Gisements stratiformes et provinces cupriferes. Societe Geologique de Belgique, Liege, pp 123–164Google Scholar
  43. Kelley KD, Jennings S (2004) A Special Issue Devoted to Barite and Zn-Pb-Ag Deposits in the Red Dog District, Western Brooks Range, Northern Alaska. Econ Geol 99:1267–1280. doi: 10.2113/gsecongeo.99.7.1267 CrossRefGoogle Scholar
  44. Kelley KD, Leach DL, Johnson CA, Clark JL, Fayek M, Slack JF, Anderson VM, Ayuso RA, Ridley WI (2004) Textural, Compositional, and Sulfur Isotope Variations of Sulfide Minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Implications for Ore Formation. Econ Geol 99:1509–1532. doi: 10.2113/gsecongeo.99.7.1509 CrossRefGoogle Scholar
  45. Ketris MP, Yudovich YE (2009) Estimations of Clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int J Coal Geol 78:135–148CrossRefGoogle Scholar
  46. Kler VR (1988) Concentrations of minor elements in coals and coal-bearing formations (in Russian). In: Kler VR, Nenakhova BF, Saprykin FY et al (eds) Metallogeny and geochemistry of coal and shale bearing strata of the USSR. Concentration patterns of elements and methods of their study, Nauka, Moscow, pp 67–142Google Scholar
  47. Kulinenko OR (1977) Relationship between germanium content and seam thickness in Paleozoic paralic coal basins of Ukraine. Int Geol Rev 19:1178–1182. doi: 10.1080/00206817709471121 CrossRefGoogle Scholar
  48. Li B, Gu X, Han R, Wen, S (2011a) Trace element geochemistry of sphalerite in Huize lead-zinc deposit, northeastern Yunnan, China. Proceedings of the 2011 International Conference on Multimedia Technology pp 4257–4260 doi: 10.1109/icmt.2011.6002858
  49. Li J, Zhuang X, Querol X (2011b) Trace element affinities in two high-Ge coals from China. Fuel 90:240–247. doi: 10.1016/j.fuel.2010.08.011 CrossRefGoogle Scholar
  50. Lombaard AF, Günzel A, Innes J, Krüger TL (1986) The Tsumeb lead-zinc-copper-silver deposit, South West Africa/Namibia In: Annhaeusser CRM, S. (ed) Mineral Deposits of Southern Africa. Geological Society of South Africa, Johannesburg, pp 1761–1782Google Scholar
  51. Mardon SM, Hower JC (2004) Impact of coal properties on coal combustion by-product quality: examples from a Kentucky power plant. Int J Coal Geol 59:153–169CrossRefGoogle Scholar
  52. Mastalerz M, Hower JC, Drobniak A, Mardon SM, Lis G (2004) From in-situ coal to fly-ash: a study of coal mines and power plants from Indiana. Int J Coal Geol 59:171–192CrossRefGoogle Scholar
  53. Meij R (1994) Trace element behaviour in coal-fired power plants. Fuel Process Technol 39:199–217CrossRefGoogle Scholar
  54. Melcher F (2003) The Otavi mountain land in Namibia: Tsumeb, germanium and snowball earth. Mitt Österr Mineralog Ges 148:413–435Google Scholar
  55. Melcher F, Buchholz P (2013) Germanium. In: Gunn G (ed.) Critical Metals Handbook. Wiley- Blackwell, Chicester, UK, (In press)Google Scholar
  56. Mosier DL, Berger VI, Singer DA (2009) Volcanogenic massive sulfide deposits of the world – database and grade and tonnage models. USGS Open File Report 2009–1034Google Scholar
  57. Müller D, Kaminski K, Uhlig S, Graupner T, Herzig P, Hunt S (2002) The transition from porphyry- to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Miner Depos 37:61–74. doi: 10.1007/s00126-001-0230-y CrossRefGoogle Scholar
  58. Onishi H (1956) Notes on the geochemistry of germanium. Bull Chem Soc Jpn 29:686–694CrossRefGoogle Scholar
  59. Paar WH, Roberts AC, Berlepsch P, Armbruster T, Topa D, Zagler G (2004) Putzite, (Cu4.7Ag3.3)Σ8GeS6, a new mineral species from Catamarca, Argentina: Description and crystal structure. Can Min 42:1757–1769. doi: 10.2113/gscanmin.42.6.1757 CrossRefGoogle Scholar
  60. Palero-Fernández FJ, Martín-Izard A (2005) Trace element contents in galena and sphalerite from ore deposits of the Alcudia Valley mineral field (Eastern Sierra Morena, Spain). J Geochem Explor 86:1–25CrossRefGoogle Scholar
  61. Papish J, Brewer FM, Holt DA (1927) Germanium XXV. Arc spectrographic detection and estimation of germanium. Occurrence of germanium in certain tin minerals. Enargite as a possible source of germanium. J Am Chem Soc 49:3028–3033. doi: 10.1021/ja01411a008 CrossRefGoogle Scholar
  62. Penney SR, Allen RM, Harrisson S, Lees TC, Murphy FC, Norman AR (2004) The global distribution of zinc mineralisation, an analysis based on a new zinc deposits database. Appl Earth Sci 113:171–182. doi: 10.1179/037174504225005672 CrossRefGoogle Scholar
  63. Prokin VA, Buslaev FP (1998) Massive copper–zinc sulphide deposits in the Urals. Ore Geol Rev 14:1–69. doi: 10.1016/s0169-1368(98)00014-6 CrossRefGoogle Scholar
  64. Putz H, Paar WH, Topa D, Makovicky E, Roberts AC (2006) Catamarcaite, Cu6GeWS8, a new germanium sulfide mineral from Capillitas, Catamarca, Argentina: Description, paragenesis and crystal structure. Can Min 44:1481–1497. doi: 10.2113/gscanmin.44.6.1481 CrossRefGoogle Scholar
  65. Qi H, Hu R, Su W, Qi L, Feng J (2004) Continental hydrothermal sedimentary siliceous rock and genesis of superlarge germanium (Ge) deposit hosted in coal: A study from the Lincang Ge deposit, Yunnan, China. Sci China Ser D Earth Sci 47:973–984. doi: 10.1360/02yc0141 CrossRefGoogle Scholar
  66. Qi HW, Rouxel O, Hu RZ, Bi XW, Wen HJ (2011) Germanium isotopic systematics in Ge-rich coal from the Lincang Ge deposit, Yunnan, Southwestern China. Chem Geol 286:252–265Google Scholar
  67. Querol X, Fernández-Turiel J, López-Soler A (1995) Trace elements in coal and their behaviour during combustion in a large power station. Fuel 74:331–343. doi: 10.1016/0016-2361(95)93464-o CrossRefGoogle Scholar
  68. Reiser FKM, Guimarães FMG, Pinto ÁMM, Matos JX, Carvalho JRS, De Oliveira DPS, Rosa DRN (2009) Germanium-rich chalcopyrite from the Barrigao remobilised vein deposit, Iberian Pyrite Belt, Portugal In: Williams PJ et al. (eds) 10th SGA Meeting, Smart Science for Exploration and Mining. Townsville, Australia, pp 746–748Google Scholar
  69. Riordan M, Hoddeson L, Herring C (1999) The invention of the transistor. Rev Mod Phys 71:S336–S345CrossRefGoogle Scholar
  70. Rose AW (1967) Trace elements in sulfide minerals from the Central district, New Mexico and the Bingham district, Utah. Geochim Cosmochim Acta 31:547–585. doi: 10.1016/0016-7037(67)90034-8 CrossRefGoogle Scholar
  71. Ruch RR, Gluskoter HJ, Shimp NF (1974) Occurrence and distribution of potentially volatile trace elements in coal: A final report. Ill State Geol Surv Env Geol Note 72Google Scholar
  72. Saini-Eidukat B, Melcher F, Lodziak J (2009) Zinc-germanium ores of the Tres Marias mine, Chihuahua, Mexico. Miner Depos 44:363–370CrossRefGoogle Scholar
  73. Schroll E (1954) Ein Beitrag zur geochemischen Analyse ostalpiner Blei-Zink-Erze. Mitt Österr Miner Ges Spec Issue 3:1–85Google Scholar
  74. Schroll E, Ibrahim NA (1959) Beitrag zur Kenntnis ostalpiner Fahlerze. Mineral Petrol 7:70–105. doi: 10.1007/bf01127568 Google Scholar
  75. Schrön W (1968) Ein Beitrag zur Geochemie des Germaniums. I. Petrogenetische Probleme. Chem Erde 27:193–251Google Scholar
  76. Sehnke ED (1996) Germanium. U.S. Geological Survey Mineral commodity summaries 1996. Washington DCGoogle Scholar
  77. Seredin VV (2003a) Anomalous Concentrations of Trace Elements in the Spetsugli Germanium Deposit (Pavlovka Brown Coal Deposit, Southern Primorye): Communication 2. Rubidium and Cesium. Lithol Miner Resour 38:233–241. doi: 10.1023/a:1023931702843 CrossRefGoogle Scholar
  78. Seredin VV (2003b) Anomalous Trace Elements Contents in the Spetsugli Germanium Deposit (Pavlovka Brown Coal Deposit) Southern Primorye: Communication 1. Antimony. Lithol Miner Resour 38:154–161. doi: 10.1023/a:1023404109510 CrossRefGoogle Scholar
  79. Seredin VV, Finkelman RB (2008) Metalliferous coals: A review of the main genetic and geochemical types. Int J Coal Geol 76:253–289CrossRefGoogle Scholar
  80. Seredin VV, Danilcheva Y, Magazina L, Sharova I (2006) Ge-bearing coals of the Luzanovka Graben, Pavlovka brown coal deposit, southern Primorye. Lithol Miner Resour 41:280–301. doi: 10.1134/s0024490206030072 CrossRefGoogle Scholar
  81. Shima M (1964) The distribution of germanium and tin in meteorites. Geochim Cosmochim Acta 28:517–532CrossRefGoogle Scholar
  82. Shpirt MY, Kler VR, Pertsikov IZ (1990) The inorganic components of solid fuels (in Russian). Khimiya, Moscow, 240 ppGoogle Scholar
  83. Smith R, Campbell JA, Felix WD (1980) Atmospheric trace element pollutants from coal combustion. Min Eng 32:1603–1613Google Scholar
  84. Soares Monteiro LV, Bettencourt JS, Juliani C, de Oliveira TF (2006) Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrósia and Fagundes sulfide-rich carbonate-hosted Zn–(Pb) deposits, Minas Gerais, Brazil. Ore Geol Rev 28:201–234. doi: 10.1016/j.oregeorev.2005.03.005 CrossRefGoogle Scholar
  85. Spears DA, Zheng Y (1999) Geochemistry and origin of elements in some UK coals. Int J Coal Geol 38:161–179. doi: 10.1016/s0166-5162(98)00012-3 CrossRefGoogle Scholar
  86. Stadnichenko T, Murata KJ, Axelrod JM (1950) Germaniferous Lignite from the District of Columbia and Vicinity. Sci 112:109. doi: 10.1126/science.112.2900.109 CrossRefGoogle Scholar
  87. Stadnichenko T, Murata KJ, Zubovic P, Hufschmidt EL (1953) Concentration of germanium in the ash of American coals - A progress report. USGS Circular 272Google Scholar
  88. Stoiber RE (1940) Minor elements in sphalerite. Econ Geol 35:501–519. doi: 10.2113/gsecongeo.35.4.501 CrossRefGoogle Scholar
  89. Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285. doi: 10.1016/0016-7037(64)90129-2 CrossRefGoogle Scholar
  90. Taylor, R.D., Leach, D.L., Bradley, D.C., and Pisarevsky, S.A., 2009, Compilation of mineral resource data for Mississippi Valley-Type and clastic-dominated sediment-hosted Pb-Zn deposits. USGS Open-File Report 2009–1297Google Scholar
  91. Thiele UK (2001) The Current Status of Catalysis and Catalyst Development for the Industrial Process of Poly(ethylene terephthalate) Polycondensation. Int J Polym Mater 50:387–394. doi: 10.1080/00914030108035115 CrossRefGoogle Scholar
  92. Tolcin AC (2013) Zinc. U.S. Geological Survey Mineral commodity summaries 2013. Washington DCGoogle Scholar
  93. Torma AE, Jiang H (1991) Extraction Processes for Gallium and Germanium. Miner Process Extr Metall Rev 7:235–258. doi: 10.1080/08827509108952673 CrossRefGoogle Scholar
  94. Tourigny G, Doucet D, Bourget A (1993) Geology of the Bousquet 2 Mine; an example of a deformed, gold-bearing, polymetallic sulfide deposit. Econ Geol 88:1578–1597. doi: 10.2113/gsecongeo.88.6.1578 CrossRefGoogle Scholar
  95. Urbain MG (1909) Analyse spectrographique des blendes. C R Hebd Séances Acad Sci 149:603–603Google Scholar
  96. Wai CM, Wetherill GW, Wasson JT (1968) The distribution of trace quantities of germanium between metal, silicate and sulfide phases. Geochim Cosmochim Acta 32:1269–1278. doi: 10.1016/0016-7037(68)90028-8 CrossRefGoogle Scholar
  97. Watling RJ (1976) Trace element distribution in primary sulphide minerals from the Keel Prospect, County Longford. P Roy Irish Acad B 76:241–261Google Scholar
  98. Wedepohl HK (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232. doi: 10.1016/0016-7037(95)00038-2 CrossRefGoogle Scholar
  99. Wellmer FW, Hannak W, Krauss U, Thormann A (1990) Deposits of rare metals. In: Kürsten M (ed) Raw Materials for New Technologies. Proceedings of the fifth international symposium, held in Hannover, Fed. Rep. of Germany, at the Federal Institute for Geosciences and Natural Resources October 19–21, 1988. Schweizerbarth, Stuttgart, pp 71–122Google Scholar
  100. Winkler C (1886) Germanium, Ge, ein neues, nichtmetallisches Element. Ber Dtsch Chem Ges 19:210–211. doi: 10.1002/cber.18860190156 CrossRefGoogle Scholar
  101. Yevdokimov AI, Yekhanin AG, Kuzmin VI, Ozyorskiy AYu (2002) New data on the germanium content of Mesozoic lignites in the basin of the river Kas (in Russian). In: The geology of coal deposits, 12th Edn. Uralsk Gos. Gorno-Geol. Akad., Yekaterinburg, pp 181–187Google Scholar
  102. Yudovich YE (2003a) Coal inclusions in sedimentary rocks: a geochemical phenomenon. A review. Int J Coal Geol 56:203–222CrossRefGoogle Scholar
  103. Yudovich YE (2003b) Notes on the marginal enrichment of Germanium in coal beds. I J Coal Geol 56:223–232. doi: 10.1016/j.coal.2003.08.003 CrossRefGoogle Scholar
  104. Yudovich YE, Ketris MP (2003) Germanium in coals (in Russian). Komi Scientific Centre UrO Russian Academy of Sciences, Syktyvkar, 204 ppGoogle Scholar
  105. Yudovich YE, Ketris MP, Merts AV (1985) Trace elements in fossil coals (in Russian). Nauka, Leningrad, 239 ppGoogle Scholar
  106. Yun S-T, So C-S, Choi S-H, Shelton KL, Koo J-H (1993) Genetic environment of germanium-bearing gold-silver vein ores from the Wolyu mine, Republic of Korea. Miner Depos 28:107–121. doi: 10.1007/bf00196335 CrossRefGoogle Scholar
  107. Yung-Chin H (1969) Genetic significance of germanium distribution in coals of a certain district. Int Geol Rev 11:243–255. doi: 10.1080/00206816909475047 CrossRefGoogle Scholar
  108. Zharov YN, Meytov EC, Sharova IG (1996) Valuable and toxic elements in the coal products of Russia: A handbook (in Russian). Nedra, Moscow, 238 ppGoogle Scholar
  109. Zhuang X, Querol X, Alastuey A, Juan R, Plana F, Lopez-Soler A, Du G, Martynov VV (2006) Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field, Inner Mongolia, Northeastern China. Int J Coal Geol 66:119–136. doi: 10.1016/j.coal.2005.06.005 CrossRefGoogle Scholar
  110. Zubovic P, Stadnichenko T, Sheffey NB (1961) Geochemistry of minor elements in coals of the Northern Great Plains coal province. USGS Bulletin 1117-AGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Helmholtz-Institute FreibergFreibergGermany
  2. 2.Institute of Geology, Komi Scientific CenterUral Branch of the Russian Academy of SciencesSyktyvkarRussia
  3. 3.Institute for MineralogyUniversity of Technology Bergakademie FreibergFreibergGermany

Personalised recommendations