Mineralium Deposita

, Volume 47, Issue 8, pp 911–931 | Cite as

Age and tectonic setting of the Bavanat Cu–Zn–Ag Besshi-type volcanogenic massive sulfide deposit, southern Iran

  • Fardin Mousivand
  • Ebrahim Rastad
  • Sebastien Meffre
  • Jan M. Peter
  • Mohammad Mohajjel
  • Khin Zaw
  • Mohammad Hashem Emami


The Bavanat Cu–Zn–Ag Besshi-type volcanogenic massive sulfide (VMS) deposit occurs within the Surian volcano-sedimentary complex in the Sanandaj–Sirjan zone (SSZ) of southern Iran. The Surian complex is comprised of pelite, sandstone, calcareous shale, basalt, gabbro sills, and thin-bedded limestone. Mineralization occurs as stratiform sheet-like and tabular orebodies hosted mainly by greenschist metamorphosed feldspathic and quartz feldspathic sandstone, basalt, and pelites. The basalts of the Surian complex show predominantly tholeiitic to transitional affinities, with a few samples that are alkalic in composition. Primitive mantle-normalized trace and rare earth element (REE) patterns of the Surian basalts display depletions in light REE, negative anomalies of Nb, Ta, and Ti, and positive anomalies of P. Positive P anomalies are indicative of minor crustal contamination. Furthermore, Th enrichments in the mid-ocean ridge basalt-normalized patterns of the Surian basalts are characteristic of rifted arc basalts emplaced in continental margin subduction zones. The high MgO content (>6 wt.%) of most Surian basalts and low TiO2 content of two samples (0.53 and 0.62 wt.%) are characteristic of boninites. The aforementioned features of the basalts indicate arc tholeiites emplaced in intra-arc rift environments and continental margin subduction zones. U–Pb dating by laser ablation- inductively coupled plasma mass spectrometry of detrital zircons extracted from the host feldspathic and quartz feldspathic sandstone yields various ages that are predominantly Permian and Triassic; however, the youngest zircons give a mean Early Jurassic concordant U–Pb age of 191 ± 12 Ma. This age, together with geological and petrochemical data, indicate that VMS mineralization formed in the Early Jurassic in pull-apart basins within the SSZ. These basins and the VMS mineralization may be temporally related to an intra-arc volcano–plutonic event associated with Neo-Tethyan oblique subduction.


Bavanat Besshi VMS U–Pb SSZ Iran 



The present study constitutes a part of the first author’s Ph.D. thesis at Tarbiat Modares University, Tehran, Iran. ICPMS/ICPAES petrochemical analyses were funded from ioStipend student Grant no. VAN08010689 supported by ioGlobal Co., Australia, and Acme Analytical Laboratories, Vancouver, Canada. The senior author gratefully thanks Dave Lawie of ioGlobal and John Gravel of Acme labs for their support. Costs of U-Pb analyses were defrayed by the Hugh E. McKinstry Student Research Grant of the Society of Economic Geologists (SEG), USA, and the ARC Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Australia. Field studies and lapidary services were funded by the Tarbiat Modares University Research Grant Council. The first author thanks the Ministry of Science, Research, and Technology of Iran for financial support of his research stay at University of Tasmania, Australia, under supervision of Mike Solomon. Patrick Quilty, University of Tasmania is kindly acknowledged for studying the paleontology samples. N. Rachid Nejad-Omran is thanked for his constructive comments on the lithogeochemical data. The International Geoscience Programme (IGCP) project number 502 (Global study of VMS deposits) provided financial support for the senior author to attend the 33rd International Geological Congress at Oslo, and participate in the post congress field trip to the VMS deposits of the Bergslagen region, Sweden. We thank Wayne Goodfellow, Geological Survey of Canada for reviewing the manuscript, and B. Lehmann for a careful editorial handling. This is GSC contribution number 20110192.

Supplementary material

126_2012_407_MOESM1_ESM.docx (25 kb)
ESM Table 1 Major, trace, and REE data for mafic volcanic rocks of the Surian volcano–sedimentary sequence (DOCX 24 kb)
126_2012_407_MOESM2_ESM.docx (26 kb)
ESM Table 2 LA-ICPMS U–Pb isotopic ratio and trace element data for zircons from the feldspathic and quartz feldspathic sandstone host rocks of the Bavanat deposit (DOCX 26 kb)


  1. Abdi M (2007) Lithogeochemistry and genesis of mineralization at Deh-Hossein and Nezam-abad W–Sn (Cu) deposits and comparison with Bamsar deposit, SW Shazand, Arak. M.Sc. thesis, Tarbiat Modares University, 270 pGoogle Scholar
  2. Agard P, Omrani J, Jolivet L, Mouthereau E (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci (Geol Rundsch) 94:401–419CrossRefGoogle Scholar
  3. Ahmadi Khalaji A, Esmaeily D, Valizadeh MV (2006) The source and tectonic characteristics of the Boroujerd granitoid mass (western Iran). Geosci Sci Q J 60:32–47 (in Persian)Google Scholar
  4. Ahmadi Khalaji A, Esmaeily D, Valizadeh MV, Rahimpour-Bonab H (2007) Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj–Sirjan zone, Western Iran. J Asian Earth Sci 29l:859–877CrossRefGoogle Scholar
  5. Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238CrossRefGoogle Scholar
  6. Alizadeh A, Martinez ML, Sarkarinejad K (2010) 40Ar-39Ar geochronology in a gneiss dome within the Zagros Orogenic Belt. C R Geosci 342:837–846Google Scholar
  7. Allen RL, Weihed P, Svenson SÅ (1996) Setting of Zn–Cu–Au–Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte District, Sweden. Econ Geol 91:1022–1053CrossRefGoogle Scholar
  8. Allen RL, Weihed P, Blundell D, Crawford T, Davidson G, Galley A, Gibson H, Hannington M, Herzig P, Large R, Lentz D, Maslennikov V, McCutcheon S, Peter J, Tornos F (2002) Global comparisons of volcanic-hosted massive sulfide districts. In: Blundel D, Neubauer F, von Quadt A (eds) The timing and location of major ore deposits in an evolving orogen, vol 204. The Geological Society, London, pp 13–37, Special PublicationGoogle Scholar
  9. Alric G, Virlogeux D (1977) Pétrographie et géochimie des roches métamorphiques et magmatiques de la région de Deh Bid-Bavanat, Chaîne de Sanandaj–Sirjan, Iran. Thése 3éme cycle, Université Scientifique et Médicale de Grenoble, France, p 316Google Scholar
  10. Arndt NT (2003) Komatiites, kimberlites and boninites. J Geophys Res 108:B6–B229CrossRefGoogle Scholar
  11. Arvin M, Robinson PT (1994) The petrogenesis and tectonic setting of lava from Baft ophiolitic mélange, SW Kerman, Iran. Can J Earth Sci 31:824–834CrossRefGoogle Scholar
  12. Arvin M, Pan Y, Dargahi S, Malekizadeh A, Babaei A (2007) Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of Neo-Tethys subduction. J Asian Eart Sci 30:474–489CrossRefGoogle Scholar
  13. Azizi H, Jahangiri A (2008) Cretaceous subduction-related volcanism in the northern Sanandaj–Sirjan Zone, Iran. J Geodyn 45:178–190CrossRefGoogle Scholar
  14. Azizi H, Moinevaziri H (2007) Geochemistry of Saquez Cretaceous volcanic rocks: using the rare earth elements (REE). Res J Univ Isfahan 27:39–55Google Scholar
  15. Azizi H, Moinevaziri H (2009) Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. J Geodyn 47:167–179CrossRefGoogle Scholar
  16. Azizi H, Moinevaziri H, Mohajjel M (2006) Pull-apart local basins for Cretaceous volcanism at north of Sanandaj, Kordestan province. Annual Symposium of Geosciences, Geological Survey of Iran, Tehran, 201–202Google Scholar
  17. Azizpour Maghvan, M (2000) Geochemistry, mineralogy and genesis of Bamsar skarn and Revesht vein-type W occurrences and their comparison with Nezam-abad W deposit (Shazand, Arak). Unpublished M.Sc. thesis, Tarbiat Modares University, 180 pGoogle Scholar
  18. Babakhani A, Alavi Tehrani N (1992) Geological map of Sabzevaran, scale 1:250,000, Geological Survey of Iran, map no. 7547Google Scholar
  19. Badrzadeh Z (2009) Petrology, geochemistry and petrogenesis of pillowed basalts at northwest of Jiroft, with emphasis on its evolving VMS mineralization.Unpublished Ph.D. thesis, Tarbiat Modares University, 360 pGoogle Scholar
  20. Badrzadeh Z, Peter JM, Aghazadeh M, Barrett TJ (2010) Volcanogenic Cu–Zn–Au and Cu–Zn massive sulfide mineralization in the Sargaz-Mata metallogenic province, Sanandaj–Sirjan zone, Iran. (extended abstract), 13th International Association For The Genesis Of Ore Deposits Quadrennial Symposium, Adelaide, Australia, Abstracts CD-ROMGoogle Scholar
  21. Badrzadeh Z, Barrett TJ, Peter JM, Gimeno D, Sabzehei M, Aghazadeh M (2011) Geology, mineralogy and sulfur isotope geochemistry of the Sargaz Cu–Zn volcanogenic massive sulfide deposit, Sanandaj–Sirjan zone, Iran. Miner Deposita. doi: 10.1007/s00126-011-0357-4
  22. Baker J, Peate D, Waight T, Meyzen C (2004) Pb isotopic analysis of standards and samples using a Pb-207-Pb-204 double spike and thallium to correct for mass bias with a double-focusing MC-ICPMS. Chem Geol 211:275–303CrossRefGoogle Scholar
  23. Barrett TJ, MacLean WH (1999) Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems. In: Barrie CT, Hannington MD (eds) Volcanic-associated massive sulfide systems: processes and examples in modern and ancient settings. Rev Econ Geol 8:101–131Google Scholar
  24. Barrie CT, Pattison J (1999) Fe–Ti basalts, high silica rhyolites, and the role of magmatic heat in the genesis of the Kam-Kotia volcanic-associated massive sulfide deposit, western Abitibi subprovince, Canada. Econ Geol Monogr 10:577–592Google Scholar
  25. Bedard JH, Lauziere K, Tremblay A, Sangster A (1998) Evidence for forearc seafloor-spreading from the Betts Cove ophiolite, Newfoundland: oceanic crust of boninitic affinity. Tectonophysics 284:233–245CrossRefGoogle Scholar
  26. Berberian M (1983) Generalized tectonic map of Iran. In: Berberian M (ed.) Continental deformation in the Iranian plateau. Geological Survey of Iran, report no. 52, p 625Google Scholar
  27. Berberian F, Berberian M (1981) Tectono-plutonic episodes in Iran. In: Gupta HK, Delany FM (eds) Zagros-Hindu Kush-Himalaya geodynamic evolution. American Geophysical Union, Washington DC, pp 5–32Google Scholar
  28. Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265CrossRefGoogle Scholar
  29. Berberian F, Muir ID, Pankhurst RJ, Berberian M (1982) Late Cretaceous and early Miocene Andean type plutonic activity in northern Makran and central Iran. J Geol Soc Lond 139:605–614CrossRefGoogle Scholar
  30. Black LP, Gulson BL (1978) The age of the mud tank carbonatite, strangways range, northern territory. BMR J Aust Geol Geophys 3:227–232Google Scholar
  31. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170CrossRefGoogle Scholar
  32. Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace element related matrix effect; SHRIMP, ID-TIMS, ELA-ICPMS, and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140CrossRefGoogle Scholar
  33. Cameron WE (1989) Contrasting boninite- tholeiite associations from New Caledonia. In: Crawford AJ (ed) Boninites. Unwin-Hyman, London, pp 314–338Google Scholar
  34. Compston W (1999) Geological age by instrumental analysis: the 29th Hallimond Lecture. Mineral Mag 63:297–311CrossRefGoogle Scholar
  35. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Mineralogical Society of America, Rev Mineral Geochem 53:469–500Google Scholar
  36. Craig JR, Vokes FM (1993) The metamorphism of pyrite and pyritic ores: an overview. Mineral Mag 57:3–18CrossRefGoogle Scholar
  37. Crawford AJ, Beccaluva L, Serri G (1981) Tectono-magmatic evolution of the West Philippine–Mariana region and the origin of boninites. Earth Planet Sci Lett 54:346–356CrossRefGoogle Scholar
  38. Crawford AJ, Falloon TJ, Green DH (1989) Classification, petrogenesis, and tectonic setting of boninites. In: Crawford AJ (ed) Boninites and related rocks. Unwin-Hyman, London, pp 1–49Google Scholar
  39. Crawford AJ, Corbett KD, Everard JL (1992) Geochemistry of the Cambrian volcanic-hosted massive sulfide-rich Mt. Read volcanics, Tasmania, and some tectonic implications. Econ Geol 87:597–619CrossRefGoogle Scholar
  40. Ebrahimi S (1999) Economic geology investigation of the Toutak complex, map of Surian, scale 1:100,000. Unpublished M.Sc. thesis, Shahid Beheshti University, 260 pGoogle Scholar
  41. Falloon TJ, Crawford AJ (1991) The petrogenesis of high-calcium boninite lavas dredged from the northern Tonga ridge. Earth Planet Sci Lett 102:375–394CrossRefGoogle Scholar
  42. Fardindoust Z (2004) Isotope geochemistry and trace elements of W (Cu–Sn) deposits, SW Astaneh, Arak. Iran J Crystallogr Mineral 13:29–42Google Scholar
  43. Fazlnia AN, Moradian A, Rezaei K, Moazzen M, Alipour S (2007) Synchronous activity of anorthositic and S-type granitic magmas in the Chah Dozdan batholith, Neyriz, Iran: evidence of zircon SHRIMP and monazite CHIME dating. J Sci Islam Repub Iran 18:221–237Google Scholar
  44. Fazlnia A, Schenk V, Van der Straaten F, Mirmohammadi M (2009) Petrology, geochemistry, and geochronology of trondhjemites from the Qori Complex, Neyriz, Iran. Lithos 112:413–433CrossRefGoogle Scholar
  45. Fowler A, Prokoph A, Stern R, Dupuis C (2002) Organization of oscillatory zoning in zircon: analysis, scaling, geochemistry, and model of a zircon from Kipawa, Quebec, Canada. Geochim Cosmochim Acta 66:311–328CrossRefGoogle Scholar
  46. Fox JS (1984) Besshi-type volcanogenic sulfide deposits; a review. Can Inst Mining Metall Bull 77:57–68Google Scholar
  47. Franklin JM, Hannington MD, Barrie CT, Jonnason IR (1999) Tectonic classification of VMS deposits. Cordilleran Round-Up, Mineral Deposit Research Unit, University of British Columbia, Short Course Notes, Vancouver, B.CGoogle Scholar
  48. Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic massive sulfide deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology, 100th Anniversary Volume, The Economic Geology Publishing Company, pp 523–560Google Scholar
  49. Fryer BJ, Jackson SE, Longerich HP (1993) The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICPMS) to in situ (U)–Pb geochronology. Chem Geol 109:1–8CrossRefGoogle Scholar
  50. Ghaderi M, Ramezani J, Valizadeh M, Fardindouost Z, Ahmadi-Khalaji A (2004) U-Pb geochronology of the Jurassic Boroujerd plutonic complex and associated intrusions within the Sanandaj–Sirjan zone. 23rd Annual Symposium of Geosciences. Geological Survey of Iran, Tehran, p 101Google Scholar
  51. Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj–Sirjan zone (Iran). J Asian Earth Sci 26:683–693CrossRefGoogle Scholar
  52. Glennie KW (2000) Cretaceous tectonic evolution of Arabia eastern plate margining: a tale of two oceans, in Middle East models of Jurassic/Cretaceous carbonate systems. SEPM Spec Publ 69:9–20Google Scholar
  53. Hanchar JM, Rudnick RL (1995) Revealing hidden structures: the application of cathodoluminescence and backscattered electron imaging to dating zircons from lower crustal xenoliths. Lithos 36:289–303CrossRefGoogle Scholar
  54. Hannington MD, de Ronde CEJ, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds.) Economic Geology, 100th Anniversary Volume, The Economic Geology Publishing Company, pp 111–141Google Scholar
  55. Harley SL, Kelly NM (2007) Zircon: tiny but timely. Elements 3:13–18CrossRefGoogle Scholar
  56. Harrison JV, Falcon NI, Allison A, McCall RJS (1936) The geology of Qashqai Sarhad: Anglo-Iranian Oil Co., Unpublished report, 200pGoogle Scholar
  57. Hart T, Gibson HL, Lesher CM (2004) Trace element geochemistry and petrogenesis of felsic volcanic rocks associated with volcanogenic Cu–Zn–Pb massive sulfide deposits. Econ Geol 99:1003–1013CrossRefGoogle Scholar
  58. Hawkins JW (1995) Evolution of the Lau Basin: insights from ODP Leg 135 In: Taylor B, Natland J (eds) Active margins andmarginal basins of the Western Pacific. American Geophysical Union, pp 125–173Google Scholar
  59. Houshmandzadeh A, Soheili M (1990a) Description of Eqlid 1:250,000 scale map, No. G10, Geological Survey of Iran, 157pGoogle Scholar
  60. Houshmandzadeh A, Soheili M (1990b) Geological map of Eqlid, scale 1:250,000. Geological Survey of Iran, map no. G10Google Scholar
  61. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69CrossRefGoogle Scholar
  62. Jannesari M (2000a) Exploration report of Surian map. Geological Survey of Iran, report no. 2017, 310pGoogle Scholar
  63. Jannesari M (2000b) Ore exploration project of Surian map, using of satellite and airborne geophysical data. Geological Survey of Iran, report no. 2223, 315pGoogle Scholar
  64. Kazemi Rad M, Rastad E, Mohajjel M (2010) Mineralogy, alteration and textures and structures of the Heneshk, Goli and Cheshme Esi Fe–Mn deposits, north east of Safashahr, Fars province. 27th Annual Symposium of Geosciences and 13th Annual Symposium of Geological Society of Iran. Geological Survey of Iran, TehranGoogle Scholar
  65. Kerrich R, Wyman DA (1996) The trace element systematics of igneous rocks in mineral exploration: an overview. In: Wyman, DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulfide exploration. Geological Association of Canada, Short Course Notes 12: 1–50Google Scholar
  66. Kosler J (2001) Laser-ablation ICPMS study of metamorphic minerals and processes. In: Sylvester PJ (ed) Laser-ablation-ICPMS in the earth sciences; principles and applications Mineralogical Association of Canada Short Course Handbook 29: 185–202Google Scholar
  67. Kosler J, Sylvester PJ (2003) Present trends and the future of zircon in geochronology; laser ablation ICPMS. Rev Mineral Geochem 53:243–275CrossRefGoogle Scholar
  68. Liaghat S, Taghipour N (2000) Genesis of Jian occurrence. 4th Annual Symposium of Geological Society of Iran. Tabriz University, Iran, pp 304–307Google Scholar
  69. Marshall B, Spry PG (2000) Discriminating between regional metamorphic remobilization and syntectonic emplacement in the genesis of massive sulfide ores. Rev Econ Geol 11:39–79Google Scholar
  70. Marshall B, Larocque ACL, Vokes FM (1999) Extensive remobilization in massive sulfide deposits: A fluid affair! In: Pasava J, Kribek B, Zak K (eds) Mineral deposits: from their origin to their environmental impacts. Balkema, Rotterdam, pp 955–958Google Scholar
  71. Marshall B, Vokes FM, Larocque ACL (2000) Regional metamorphic remobilization: upgrading and formation of ore deposits. Rev Econ Geol 11:19–38Google Scholar
  72. Mattinson JM, Graubard CM, Parkinson DL, McLelland WC (1996) U–Pb reverse discordance in zircons: the role of fine-scale oscillatory zoning and sub-microscopic transport of Pb. Am Geophys Union Geophys Monogr 95:355–370Google Scholar
  73. Meffre S, Aitchison JC, Crawford AJ (1996) Geochemical evolution and tectonic significance of boninites and tholeiites from the Koh ophiolite, New Caledonia. Tectonics 15:67–83CrossRefGoogle Scholar
  74. Meffre S, Scott RJ, Glen RA, Squire RJ (2007) Reevaluation of contact relationships between Ordovician volcanic belts and the quartz-rich turbidites of the Lachlan Orogen. Aust J Earth Sci 54:363–383CrossRefGoogle Scholar
  75. Meffre S, Large RR, Scott R, Woodhead J, Chang Z, Gilbert SE, Danyushevsky LV, Maslennikov V, Hergt JM (2008) Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia. Geochim Cosmochim Acta 72:2377–2391CrossRefGoogle Scholar
  76. Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chem Geol 56:207–218CrossRefGoogle Scholar
  77. Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous–Tertiary convergence and continental collision Sanandaj–Sirjan Western Iran. J Asian Earth Sci 21:397–412CrossRefGoogle Scholar
  78. Monzier M, Danyushevsky LV, Crawford AJ, Bellon H, Cotton J (1993) High Mg-andesites from the southern termination of the New Hebrides island arc (SW Pacific). J Volcanol Geotherm Res 57:193–217CrossRefGoogle Scholar
  79. Motevali K (2005) Mineralogy, geochemistry and genesis of Khosro-abad and Tekieh-bala Fe deposits in NE Songhor. Unpublished M.Sc. thesis, Tarbiat Modares University, 250pGoogle Scholar
  80. Mousivand F (2003) Mineralogy, geochemistry and genesis of copper mineralization in the Surian volcano–sedimentary complex, Bavanat area, Fars Province. M.Sc. thesis, Tarbiat Modares University, Iran, 300 pGoogle Scholar
  81. Mousivand F (2010) Geology, geochemistry and genesis of the Chahgaz Zn–Pb–Cu deposit, south of Shahre Babak; and its comparison with the Bavanat Cu–Zn–Ag volcanogenic massive sulfide deposit, in the South Sanandaj–Sirjan zone. Unpublished Ph.D. thesis, Tarbiat Modares University, 505 pGoogle Scholar
  82. Mousivand F, Rastad E (2005) Using trace and rare earth elements in exploration of VMS deposits in the Bavanat area, NE of Shiraz. 23rd Annual Symposium of Geosciences, Geological Survey of Iran, 32–33Google Scholar
  83. Mousivand F, Rastad E, Emami, MH (2001) Cu-Zn (Ag) massive sulfide mineralization in the Surian volcano-sedimentary complex, in the Bavanat area, Sanandaj–Sirjan zone. 21st Annual Symposium of Geosciences, Geological Survey of Iran, 159–161Google Scholar
  84. Mousivand F, Rastad E, Emami MH (2004) Bavanat copper deposit; a Besshi-type volcanogenic massive sulfide deposit in Iran. 22nd Annual Symposium of Geosciences, Geological Survey of Iran, Tehran, 50–52Google Scholar
  85. Mousivand F, Rastad E, Hoshino K, Watanabe M (2007) The Bavanat Cu–Zn–Ag orebody: first recognition of a Besshi-type VMS deposit in Iran. N Jahrb Mineral (Abh) 183:297–315CrossRefGoogle Scholar
  86. Mousivand F, Rastad E, Peter JM (2008a) An overview of volcanogenic massive sulfide deposits of Iran (abstract). Abstract, 33rd Internatational Geological Congress, OsloGoogle Scholar
  87. Mousivand F, Rastad E, Peter JM (2008b) Chahgaz: a metamorphosed Zn–Pb–Cu volcanogenic massive sulfide deposit in the Sanandaj–Sirjan zone, southern Iran (abstract). 33rd International Geological Congress, OsloGoogle Scholar
  88. Mousivand F, Rastad E, Meffre S, Solomon M, Peter JM, Zaw K (2011) U-Pb geochronology and Pb isotope characteristics of the Chahgaz volcanogenic massive sulfide deposit, southern Iran. Int Geol Rev 53:1239–1262CrossRefGoogle Scholar
  89. Murphy JB (2006) Arc magmatism I: relationship between subduction and magma genesis. Geosience Canada 33:143–167Google Scholar
  90. Murphy JB (2007) Arc magmatism II: geochemical and isotopic characteristics. Geosci Can 34:7–35Google Scholar
  91. Noori Khankahdani K, Sabzehei M, Vosooghi Abedini M (2006) Origin of Bon-Dono gneisses, the east of Bavanat, Fars province. Geosciences 61:160–177 (in Persian)Google Scholar
  92. Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L (2008) Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106:380–398CrossRefGoogle Scholar
  93. Otrodi S (2006) Petrography, petrogenesis and tectono-magmatic features of the Koresefid 1:100,000 scale quadrangle, in the Sanandaj–Sirjan zone. Unpublished Ph.D. thesis, Shahid Beheshti University, 390 pGoogle Scholar
  94. Otrodi S, Vossoughi Abedini M, Pourmoafi M (2006) Tectono-magmatic environment of ultramafic- intermediate intrusions in Chahghand Complex (south part of Sanandaj–Sirjan zone). Geosciences 15:88–97 (in Persian)Google Scholar
  95. Oveisi B (2001) Geological map of Surian, scale 1:100,000. Geological Survey of Iran, map no. 6750Google Scholar
  96. Pearce J (1996) A user’s guide to basalt discrimination diagrams. In: Wyman, DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulfide exploration. Geological Association of Canada, Short Course Notes, 12: pp 79–114Google Scholar
  97. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300CrossRefGoogle Scholar
  98. Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47CrossRefGoogle Scholar
  99. Pearce JA, van der Laan SR, Arculus RJ, Murton BJ, Ishii T, Peate DW, Parkinson IJ (1992) Boninite and harzburgite from Leg 125 (Bonin-Mariana fore-arc): a case study of magma genesis during the initial stages of subduction. In: Fryer P, Pearce JA, Stocking LB (eds) Proceedings Ocean Drilling Program, Scientific Results, 125: pp 623–659Google Scholar
  100. Peter JM, Scott SD (1999) Windy Craggy, northwestern British Columbia: The world’s largest Besshi-type deposit. In: Barrie CT, Hannington MD (eds) Volcanic-associated massive sulfide deposits. Processes and examples in modern and ancient settings. Rev Econ Geol 8:261–295Google Scholar
  101. Piercey SJ (2011) The setting, style, and role of magmatism in the formationof volcanogenic massive sulfide deposits. Miner Deposita. doi: 10.1007/s00126-011-0341-z
  102. Piercey SJ, Murphy DC, Mortensen JK, Paradis S (2001a) Boninitic magmatism in a continental margin setting, Yukon–Tanana terrane, southeastern Yukon, Canada. Geol 29:731–734CrossRefGoogle Scholar
  103. Piercey SJ, Paradis S, Murphy DC, Mortensen JK (2001b) Geochemistry and paleotectonic setting of felsic volcanic rocks in the Finlayson Lake volcanic-hosted massive sulfide (VHMS) district, Yukon, Canada. Econ Geol 96:1877–1905Google Scholar
  104. Piercey SJ, Peter JM, Mortensen JK (2008) A special issue devoted to continental margin massive sulfide deposits and their geodynamic environments. Econ Geol 103:1–4CrossRefGoogle Scholar
  105. Polliand M, Schaltegger U, Frank M, Fontbote L (2005) Formation of intra-arc volcanosedimentary basins in the western flank of the central Peruvian Andes during Late Cretaceous oblique subduction: field evidence and constraints from U–Pb ages and Hf isotopes. Int J Earth Sci (Geol Rundsch) 94:231–242CrossRefGoogle Scholar
  106. Pourkermani M (1977) Etude tectonique et microtectonique dans la chaine de Sanandaj-Sirjan (Iran) son rapport avec i’accident du zagrides (region d’Eqlid-Dehbid). These doct. tricycle Paris-Sud Orsay, 210pGoogle Scholar
  107. Rachid Nejad-Omran N, Emami HM, Sabzehei M, Rastad E, Bellon H, Piqué A (2002) Lithostratigraphie et histoire paléozoïque àpaléocéne des complexes métamorphiques de la région de Muteh, zone de Sanandaj-Sirjan (Iran méridonal). Comptes Rendus Géoscience 334:1185–1191CrossRefGoogle Scholar
  108. Ricou LE (1974) L’évolution géologique de la région de Neyriz (Zagros Iranien) et l’évolution structurale des Zagrides. Thèse d’État, Université d’Orsay, France, 350 pGoogle Scholar
  109. Rogers NW, Saunders AD (1989) Magnesian andesites from Mexico, Chile and the Aleutian Islands: Implications for magmatism associated with ridge-trench collision. In: Crawford AJ (ed) Boninites and related rocks. Unwin-Hyman, London, pp 416–445Google Scholar
  110. Sabzehei M (1974) Les mélanges ophiolitiques de la région d’Esfandagheh (Iran meridonal) étude pétrologique et structural, interprétation dans le cadre iranien, Thèse d’État, Université de Grenoble, 306 pGoogle Scholar
  111. Sabzehei M, Roshan Ravan J, Amini B, Eshraghi SA, Alai Mahabadi S, Seraj M (1993) Geological map of Neyriz, scale 1:250,000. Geological Survey of Iran, map no. H-11Google Scholar
  112. Sahandi MR (2001) Geological map of Esfandagheh, scale 1:100,000. Geological Survey of Iran, map no. 7447Google Scholar
  113. Sengör AMC (1990) A new model for the late Paleozoic–Mesozoic tectonic evolution of Iran and implications for Oman. In: Robertson AHF, Searle MP, Ries AC (eds) The Geology and Tectonics of the Oman Region. Geological Society of London, Special Publication 22: pp 278–281Google Scholar
  114. Sengör AMC (1991) Late Paleozoic and Mesozoic tectonic evolution of the Middle Eastern Tethysides: implication for the Paleozoic geodynamics of the Tethyan realm. International Geological Correlation Programme Project 276 Newsletter 2:111–149Google Scholar
  115. Sengör AMC, Natal’in BA (1996) Paleotectonics of Asia: fragments of a synthesis. In: Yin A, Harrison TM (eds) The tectonic evolution of Asia. Cambridge University Press, Cambridge, U.K., pp 486–640Google Scholar
  116. Shahabpour J (2005) Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. J Asian Earth Sci 24:405–417CrossRefGoogle Scholar
  117. Shahabpour J (2007) Island-arc affinity of the Central Iranian volcanic belt. J Asian Earth Sci 30:652–665CrossRefGoogle Scholar
  118. Shahbazi H, Siebel W, Pourmoafee M, Ghorbani M, Sepahi AA, Shang CK, Vousoughi Abedini M (2010) Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan Zone (Iran): new evidence for Jurassic magmatism. J Asian Earth Sci 39:668–683CrossRefGoogle Scholar
  119. Shahidi A (2001) Geological map of Dehbid, scale 1:100,000. Geological Survey of Iran, map no. G 10Google Scholar
  120. Sheikholeslami MR (2002) Evolution structurale et métamorphique de la marge sud de la microplaque de l’Iran central: les complexes métamorphiques de la région de Neyriz (Zone de Sanandaj-Sirjan), Ph.D. Thèse, Université de Brest, 194 pGoogle Scholar
  121. Sheikholeslami MR, Bellon H, Emami H, Sabzehei M, Piqué A (2003) Nouvelles données structurales et datations 40 K-40 Ar surles roches métamorphiques de la region de Neyriz (zone de Sanandaj-Sirjan, Iran méridional). Leur intérêt dans le cadre du domaine néo-tethysien du Moyen-Orient. Comptes Rendus Géoscience 335:981–991CrossRefGoogle Scholar
  122. Sheikholeslami MR, Pique A, Mobayen P, Sabzehei M, Bellon H, Emami MH (2008) Tectono-metamorphic evolution of the Neyriz metamorphic complex, Quri-Kor-e-Sefid area (Sanandaj–Sirjan Zone, SW Iran). J Asian Earth Sci 31:504–521CrossRefGoogle Scholar
  123. Shervais JW (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118CrossRefGoogle Scholar
  124. Slack JF (1993) Descriptive and grade-tonnage models for Besshi-type massive sulfide deposits. In: Kirkham RV, Sinclar WD, Thorpe RI, Duke JM (eds) Mineral deposit modeling. Geological Association of Canada, Special Paper 40: pp 343–371Google Scholar
  125. Soheili M (1981) Geological map of Anar, scale 1:250,000. Geological Survey of Iran, map no. H-11Google Scholar
  126. Speer JA (1982) Zircon. Rev Mineral 5(2nd edition):67–112Google Scholar
  127. Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geol Soc Am Bull 104:1621–1636CrossRefGoogle Scholar
  128. Stöcklin J (1968) Structural history and tectonics of Iran; a review. Am Assoc Pet Geol Bull 52:1229–1258Google Scholar
  129. Stöcklin J (1974) Possible ancient continental margin in Iran. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, Berlin, pp 873–887Google Scholar
  130. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society of London, Special Publication 42: pp 313–345Google Scholar
  131. Swinden HS (1996) Geochemistry of volcanic rocks in the Moreton’s Harbour-Twillingate area, Notre Dame Bay; in Current Research, Newfoundland Department of Mines and Energy. Geol Surv Branch 96–1:207–226Google Scholar
  132. Taghipour N (2000) Geology and genesis of Jian copper deposit, Fars Province. Unpublished M.Sc. thesis, Shiraz University, Iran, 201pGoogle Scholar
  133. Taghipour N, Moore F (2002) Textures and REE geochemistry in Jian copper occurrence. Iran J Crystallogr Mineral 10:51–65Google Scholar
  134. Takin M (1972) Iranian geology and continental drift in the Middle East. Nature 235:147–150CrossRefGoogle Scholar
  135. Talebian M, Jackson J (2002) Offset on the main recent fault of NW Iran and implications for late Cenozoic tectonics of the Arabia–Eurasia collision zone. Geophys J Int 150:422–439CrossRefGoogle Scholar
  136. Taraz H (1974) Geology of the Surmaq–Deh Bid area, Abadeh Region, Central Iran. Geol Surv Iran, report no. 37:1–148Google Scholar
  137. Tavakkoli H (2004) Mineralogy, geochemistry and genesis of Fe deposits, NW Hamedan. Unpublished M.Sc. thesis, Tarbiat Modares University, 230 pGoogle Scholar
  138. Vokes FM (1995) Metamorphosed ores: a retrospective overview. In: Pasava J, Kribek B, Zak K (eds) Mineral deposits. Balkema, Rotterdam, pp 917–920Google Scholar
  139. Vokes FM (2000a) Textural aspects of metamorphosed sulfide ores. In: Kojonen K, Carlson, Holtta P, Lahti S (eds) Mini-symposium, Espoo, Finland (MSF). Extended Abstracts, pp 97–101Google Scholar
  140. Vokes FM (2000b) Ores and metamorphism: introduction and historical perspectives. Rev Econ Geol 11:1–18Google Scholar
  141. Vokes FM, Craig JR (1993) Post-recrystallisation mobilization phenomena in metamorphosed stratabound sulfide ores. Mineral Mag 57:19–28CrossRefGoogle Scholar
  142. Watanabe M, Hoshino K, Osaki T, Yukawa M, Sugiyama M, Nishido H, Kagami H (1993) Mineralogy and geochemistry of Besshi-type deposits and related green rocks in the Sanbagawa belt, Japan, implications for their metallogenic evolution. Resour Geol Spec Issue 17:213–228Google Scholar
  143. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC, Speigel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses. Geostand Newslett 19:1–23CrossRefGoogle Scholar
  144. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol Isot Geosci Sect 20:325–343Google Scholar
  145. Wyman DA (2000) High-precision exploration geochemistry; applications for volcanogenic massive sulfide deposits. Aust J Earth Sci 47:861–871CrossRefGoogle Scholar
  146. Wyman DA, Bleeker W, Kerrich R (1999) A 2.7 Ga Komatiite, low Ti tholeiite, arc tholeiite transition, and inferred proto-arc geodynamic setting of the Kidd Creek Deposit: Evidence from precise trace element data. In: Hannington MD, Barrie CT (eds) The Giant Kidd Creek volcanogenic massive sulfide deposit, Western Abitibi Subprovince, Canada. Rev Econ Geol 10:511–528Google Scholar
  147. Yarmohammadi A (2006) Mineralogy, geochemistry and genesis of the Barika gold (and barite and base metal) mineralization, east of Sardasht, northwestern Iran.Unpublished M.Sc. thesis, Tarbiat Modares University, 260 pGoogle Scholar
  148. Yarmohammadi A, Rastad E, Mousivand F, Watanabe M (2008) Barika Au–Ag–(Zn–Pb–Cu) deposit: First recognition of gold-rich Kuroko-type VMS mineralization in Iran (abstract). 33rd International Geological Congress, OsloGoogle Scholar
  149. Zarasvandi A, Liaghat S, Moore F (2001) Geochemical prospecting project of copper in the Bavanat area, Fars Province. 5th Annual Symposium of Geological Society of Iran, Tehran University, 111–115Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Fardin Mousivand
    • 1
    • 5
  • Ebrahim Rastad
    • 1
  • Sebastien Meffre
    • 2
  • Jan M. Peter
    • 3
  • Mohammad Mohajjel
    • 1
  • Khin Zaw
    • 2
  • Mohammad Hashem Emami
    • 4
  1. 1.Department of Geology, Faculty of Basic SciencesTarbiat Modares UniversityTehranIran
  2. 2.ARC Centre of Excellence in Ore Deposits (CODES)University of TasmaniaHobartAustralia
  3. 3.Central Canada Division, Geological Survey of CanadaOttawaCanada
  4. 4.Research Institute for Earth Sciences, Geological Survey of IranTehranIran
  5. 5.School of GeosciencesShahrood University of TechnologyShahroodIran

Personalised recommendations