Skip to main content
Log in

Origin of the Zálesí U–Ni–Co–As–Ag/Bi deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Zálesí vein-type deposit is hosted by Early Paleozoic high-grade metamorphic rocks on the northern margin of the Bohemian Massif. The mineralization is composed of three main stages: uraninite, arsenide, and sulfide. The mineral assemblages formed at low temperatures (~80 to 130°C, locally even lower) and low pressures (<100 bars). The salinity of the aqueous hydrothermal fluids (0 to 27 wt.% salts) and their chemical composition vary significantly. Early fluids of the oldest uraninite stage contain a small admixture of a clathrate-forming gas, possibly CO2. Salinity correlates with oxygen isotope signature of the fluid and suggests mixing of brines [δ 18O around +2‰ relative to standard mean ocean water (SMOW)] with meteoric waters (δ 18O around −4‰ SMOW). The fluid is characterized by highly variable halogen ratios (molar Br/Cl = 0.8 × 10−3 to 5.3 × 10−3; molar I/Cl = 5.7 × 10−6 to 891 × 10−6) indicating a dominantly external origin for the brines, i.e., from evaporated seawater, which mixed with iodine-enriched halite dissolution brine. The cationic composition of these fluids indicates extensive interaction of the initial brines with their country rocks, likely associated with leaching of sulfur, carbon, and metals. The brines possibly originated from Permian–Triassic evaporites in the neighboring Polish Basin, infiltrated into the basement during post-Variscan extension and were finally expelled along faults giving rise to the vein-type mineralization. Cenozoic reactivation by low-salinity, low-δ 18O (around −10‰ SMOW) fluids of mainly meteoric origin resulted in partial replacement of primary uraninite by coffinite-like mineral aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexandre P, Kyser TK (2005) Effects of cationic substitutions and alteration of uraninite, and implications for the dating of uranium deposits. Can Mineral 43:1005–1017

    Article  Google Scholar 

  • Bakker RJ (1997) Clathrates: computer programs to calculate fluid inclusion V–X properties using clathrate melting temperatures. Comput Geosci 23:1–18

    Article  Google Scholar 

  • Barnes HL (ed) (1997) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York

  • Bastin ES (1939) The nickel-cobalt-native silver ore-type. Econ Geol 34:1–40

    Article  Google Scholar 

  • Baumann L (1965) Die Erzlagerstätten der Freiberger Randgebiete. Freiberg Forsch C 188:1–268

    Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57:683–684

    Article  Google Scholar 

  • Bodnar RJ (1995) Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits. In: Thompson JFH (ed) Magmas, fluids, and ore deposits. Mineral Assoc Canada Short Course 23, pp 129–152

  • Boiron MC, Cathelineau M, Banks DA, Buschaert S, Fourcade S, Coulibaly Y, Michelot JL, Boyce A (2002) Fluid transfers at a basement/cover interface. Part II. Large-scale introduction of chlorine into basement by Mesozoic basinal brines. Chem Geol 192:121–140

    Article  Google Scholar 

  • Boiron MC, Cathelineau M, Banks DA, Fourcade S, Vallance J (2003) Mixing of metamorphic and surficial fluids during the uplift of the Hercynian upper crust: consequences for gold deposition. Chem Geol 194:119–141

    Article  Google Scholar 

  • Borkowska M, Dörr W (1998) Some remarks on the age and mineral chemistry of orthogneisses from the Ladek-Snieznik metamorphic massif—Sudetes, Poland. Terra Nostra 2:27–30

    Google Scholar 

  • Borkowska M, Choukroune P, Hameuret J, Martineau F (1990) A geochemical investigation of the age, significance and structural evolution of the Caledonian–Variscan granite-gneisses of the Snieznik metamorphic area (Central Sudetes, Poland). Geol Sudetica 25:1–27

    Google Scholar 

  • Bottomley DJ, Renaurd J, Kotzer T, Clark ID (2002) Iodine-129 constraints on residence times of deep marine brines in the Canadian Shield. Geology 30(7):587–590

    Article  Google Scholar 

  • Bottrell SH, Yardley BWD, Buckley F (1988) A modified crush–leach method for analysis of fluid inclusion electrolytes. Bull Mineral 111:279–290

    Google Scholar 

  • Brown PhE (1989) FLINCOR: A fluid inclusion data reduction and exploration program. In: Second biennial Pan-American conference on research on fluid inclusions, program with abstracts, p 14

  • Carpenter AB (1978) Origin and chemical evolution of brines in sedimentary basins. Oklahoma Geol Surv 79:60–77

    Google Scholar 

  • Chagué-Goff C, Fyfe WS (1996) Geochemical and petrographical characteristics of a domed bog, Nova Scotia: a modern analogue for temperate coal deposits. Org Geochem 24(2):141–158

    Article  Google Scholar 

  • Chan L-H, Starinsky A, Katz A (2002) The behavior of lithium and its isotopes in oilfield brines: Evidence from the Heletz-Kokhav field, Israel. Geochim Cosmochim Acta 66:615–623

    Article  Google Scholar 

  • Chlupáč I, Brzobohatý R, Kovanda J, Stráník Z (2002) Geological history of the Czech Republic. Academia, Praha (in Czech)

    Google Scholar 

  • Čadek J, Benešová Z, Buzek F, Fengl M, Hladíková J, Jansa J, Legierski J, Majer V, Mikšovská J, Novák F, Reichmann F, Šmejkal V, Vavřín I, Veselý J (1981) Genetic conditions of formation of fluorite deposits. MS Czech Geol Surv, Praha (in Czech)

  • Dadlez R (1997) Epicontinental basins in Poland: Devonian to Cretaceous—relationship between the crystalline basement and sedimentary infill. Geol Quart 41(4):419–432

    Google Scholar 

  • Davis DW, Lowenstein TK, Spencer RJ (1990) Melting behavior of fluid inclusions in laboratory-grow halite crystals in the system NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O and NaCl–CaCl2–H2O. Geochim Cosmochim Acta 54:591–601

    Article  Google Scholar 

  • Davisson ML, Criss RE (1996) Na–Ca–Cl relations in basinal fluids. Geochim Cosmochim Acta 60:2743–2752

    Article  Google Scholar 

  • Dolníček Z (1999) Paragenesis of barite occurrences in the surroundings of Tišnov. MSc. thesis, MU Brno

  • Dolníček Z (2005) Cenozoic fluorite mineralization from the Brunovistulicum, southeastern margin of the Bohemian massif (Czech Republic). Geol Carpath 56(2):169–177

    Google Scholar 

  • Dolníček Z, Malý K, Dvořák J (2003) Origin of the dolomite mineralization from a pegmatite dike at Horní Bory, Moldanubicum, Czech Republic. Mitt Österr Miner Ges 148:124–125

    Google Scholar 

  • Don J, Dumicz M, Wojciechowska I, Zelazniewiecz A (1990) Lithology and tectonics of the Orlica-Snieznik Dome, Sudetes—recent state of knowledge. N Jahrb Geol Paläont Abh 179:159–188

    Google Scholar 

  • Don J, Skácel J, Gotowala R (2003) The boundary zone of the East and West Sudetes on the 1:50 000 scale geological map of the Velké Vrbno, Staré Město and Śnieznik Metamorphic Units. Geol Sudetica 53:25–59

    Google Scholar 

  • Fediuk F, Fediuková E (1985) Post-Mesozoic alcaline volcanites of Northern Moravia. Acta Univ Carol, Geol (Neužil vol), pp 355–382 (in Czech)

  • Fehn U, Snyder GT (2005) Residence times and source ages of deep crustal fluids: interpretation of 129I and 36Cl results from the KTB-VB drill site, Germany. Geofluids 5:42–51

    Article  Google Scholar 

  • Fojt B, Dolníček Z, Kopa D, Sulovský P, Škoda R (2005) Paragenesis of the uranium deposit at Zálesí near Javorník in Rychlebské hory Mts., Czech Republic. Acta Mus Silesiae (A) 54(3):223–280 (in Czech)

    Google Scholar 

  • Fontes JCh, Matray JM (1993) Geochemistry and origin of formation brines from the Paris basin, France: 1. Brines associated with Triassic salts. Chem Geol 109:149–175

    Article  Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geol Soc Lond Spec Publ 179, pp. 35–61

  • Frape SK, Fritz P (1987) Geochemical trends from groundwaters from the Canadian Shield. In: Fritz P, Frape SK (eds) Saline waters and gases in crystalline rocks. Geol Assoc Canada Spec Pap 33, pp 19–38

  • Gleeson SA Wilkinson JJ, Stuart FM, Banks DA (2001) The origin and evolution of base metal mineralising brines and hydrothermal fluids, South Cornwall, UK. Geochim Cosmochim Acta 65(13):2067–2079

    Article  Google Scholar 

  • Grinenko VA (1962) Preparation of sulphur dioxide for isotope analysis. Žurnal Neorgan Chimiji 7:2478–2483 (in Russian)

    Google Scholar 

  • Hedenquist JW, Henley RW (1985) The importance of CO2 on freezing point measurements of fluid inclusions: evidence from active geothermal systems and implications for epithermal ore deposition. EconGeol 80:1379–1406

    Google Scholar 

  • Heijlen W, Muchez Ph, Banks DA (2001) Origin and evolution of high-salinity, Zn-Pb mineralising fluids in the Variscides of Belgium. Mineral Deposita 36:165–176

    Article  Google Scholar 

  • Heijlen W, Muchez Ph, Banks DA, Schneider J, Kucha H, Keppens E (2003) Carbonate-hosted Zn-Pb deposits in Upper Silesia, Poland: origin and evolution of mineralizing fluids and constraints on genetic models. Econ Geol 98:911–932

    Article  Google Scholar 

  • Hladíková J, Kříbek B (1988) Distribution and isotopic composition of sulphidic sulphur in rocks of the north-eastern part of the Bohemian Massif. Čas Mineral Geol 33(2):113–129

    Google Scholar 

  • Hoefs J (1997) Stable isotope geochemistry,, 4th edn. Springer, Berlin

    Google Scholar 

  • Hurai V, Harčová E, Huraiová M, Ozdín D, Prochaska W, Wiegerová V (2002) Origin of siderite veins in the Western Carpathians 1. P-T-X-δ 13C-δ 18O relations in ore-forming brines of the Rudňany deposit. Ore Geol Rev 21:67–101

    Article  Google Scholar 

  • Johnson LH, Burgess R, Turner G, Milledge HJ, Harris JW (2000) Noble gas and halogen geochemistry of mantle fluids: Comparison of African and Canadian diamonds. Geochim Cosmochim Acta 64:717–732

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Pattrick RAD, Turner G (2001) Noble gas and halogen evidence on the origin of Cu-Porphyry mineralising fluids. Geochim Cosmochim Acta 65:2651–2668

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Leach D, Pattrick RAD (2002a) Hydrothermal fluid origins in Mississippi Valley-type ore districts: Combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the Illinois–Kentucky Fluorspar District, Viburnum Trend, and Tri-State Districts, Midcontinent United States. Econ Geol 97:453–469

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Pattrick RAD, Turner G (2002b) Hydrothermal fluid origins in a fluorite-rich Mississippi Valley-type district: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the South Pennine Ore Field, United Kingdom. Econ Geol 97:435–451

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Harrison D, Bjorlykke A (2005) Noble gas and halogen evidence for the origin of Scandinavian sandstone-hosted Pb–Zn deposits. Geochim Cosmochim Acta 69:109–129

    Article  Google Scholar 

  • Kissan SA (1993) Five-element (Ni–Co–As–Ag–Bi) veins. In: Sheanan PA, Cherry ME (eds) Ore deposit models, vol. II. Geoscience Canada, Reprint Series 6, pp 87–99

  • Klemd R, Bröcker M, Schramm J (1995) Characterisation of amphibolite-facies fluids of Variscan eclogites from the Orlica-Snieznik dome (Sudetes, SW Poland). Chem Geol 119:101–113

    Article  Google Scholar 

  • Krs M, Pruner P, Man O (2001) Tectonic and paleogeographic interpretation of the paleomagnetism of Variscan and pre-Variscan formations of the Bohemian Massif, with special reference to the Barrandian terrane. Tectonophysics 332:93–114

    Article  Google Scholar 

  • Lefebure DV (1996) Five-element veins Ag-Ni–Co–As +/−(Bi, U). In: Lefebure DV, Hőy T (eds) Selected British Columbia mineral deposit profiles, vol. 2—metallic deposits. British Columbia Ministry of Employment and Investment, Open File 1996-13, pp 89–92

  • Marek S, Pajchlowa M (eds) (1997) The epicontinental Permian and Mesozoic in Poland. Pr Państw Inst Geol 153, pp 1–452 (in Polish)

  • Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Variscan orogen in Poland. Geol Quart 50(1):89–118

    Google Scholar 

  • McCaffrey MA, Lazar B, Holland HD (1987) The evaporation path of seawater and the coprecipitation of Br- and K+ with halite. J Sedim Petrol 57:928–937

    Google Scholar 

  • McCaig AM, Tritlla J, Banks DA (2000) Fluid mixing and recycling during Pyrenean thrusting: Evidence from fluid inclusion halogen ratios. Geochim Cosmochim Acta 64(19):3395–3412

    Article  Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a palaeotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • Mrňa F, Pavlů D (1967) The deposits of the Ag–Bi–Co–Ni–As formation in the Bohemian massif. Sbor Geol Věd Lož Geol 9:7–104 (in Czech)

    Google Scholar 

  • Muramatsu Y, Wedepohl KH (1998) The distribution of iodine in the earth’s crust. Chem Geol 147:201–216

    Article  Google Scholar 

  • Naumov GB, Motorina ZM, Naumov VB (1971) The origin of carbonates in veins of the five-element formation. Geochimija 8:938–948 (in Russian)

    Google Scholar 

  • Novák M, Vile MA, Bottrell SH, Štěpánová M, Jačková I, Buzek F, Přechová E, Newton RJ (2005) Isotope systematics of sulfate–oxygen and sulfate–sulfur in six European peatlands. Biogeochemistry 76:187–213

    Article  Google Scholar 

  • Oakes CS, Bodnar RJ, Simonson JM (1990) The system NaCl–CaCl2–H2O. I.: The ice liquidus at 1 atm total pressure. Geochim Cosmochim Acta 54:603–610

    Article  Google Scholar 

  • O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558

    Article  Google Scholar 

  • Ondruš P, Veselovský F, Gabašová A, Drábek M, Dobeš P, Malý K, Hloušek J, Sejkora J (2003) Ore-forming processes and mineral parageneses of the Jáchymov ore district. J Czech Geol Soc 48(3–4):157–192

    Google Scholar 

  • Pačes T (1987) Hydrochemical evolution of saline waters from crystalline rocks of the Bohemian Massif (Czechoslovakia). In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geol Assoc Canada Spec Pap, pp 145–156

  • Pluskal O (1992) The Czechoslovak uranium. Uhlí, rudy 7:9–12 (in Czech)

    Google Scholar 

  • Reynolds J, Goldstein R (1990) Systematics of fluid inclusions in authigenic minerals and applications in a sedimentary basin analysis. Short course at the University of Manchester, 83 pp

  • Schmidt Mumm A, Wolfgramm M (2004) Fluid systems and mineralization in the North German and Polish basin. Geofluids 4:315–328

    Article  Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow and London

    Google Scholar 

  • Sheppard SMF (1986) Characterization and isotopic variations in natural waters. Rev Mineral 16:165–183

    Google Scholar 

  • Skácel J (1995) An overview of geology and explanations to the geological map of the Rychlebské hory Mts. 1:50 000. Acta Univ Palack Olomuc, Geol 34:9–23

    Google Scholar 

  • Skácel J (2004) The Sudetic marginal fault between Bílá Voda and Lipová Lázně. Acta Geodyn Geomater 1, 3(135):31–33

    Google Scholar 

  • Stober I, Bucher K (1999) Origin of salinity of deep groundwater in crystalline rocks. Terra Nova 11:181–185

    Article  Google Scholar 

  • Svensen H, Jamtveit B, Banks DA, Austerheim H (2001) Halogen contents of eclogite facies fluid inclusions and minerals: Caledonides, western Norway. J Metamorph Geol 19:165–178

    Article  Google Scholar 

  • Šuráň J, Veselý T (1982) Small uranium deposits in the crystalline complexes of the Bohemian Massif. Part IV: the region of Eastern Bohemia and Moravia. Geol Hydrometalurg Uran 6(4):3–50 (in Czech)

    Google Scholar 

  • Turniak K, Mazur S, Wysoczański R (2000) SHRIMP zircon geochronology and geochemistry of the Orlica-Śnieżnik gneisses (Variscan belt of Central Europe) and their tectonic implications. Geodinam Acta 13(5):293–312

    Article  Google Scholar 

  • Worden RH (1996) Controls on halogen concentrations in sedimentary formation waters. Mineral Mag 60:259–274

    Article  Google Scholar 

  • Zeleňák M (1968) The study of ore-bearing rocks at the Zálesí deposit. MSc Thesis, PřF UJEP Brno (in Czech)

  • Zherebtsova IK, Volkova NN (1966) Experimental study of behaviour of trace elements in the process of natural solar evaporation of Black Sea water and Lake Sasky-Sivash brine. Geochem Int 3:656–670

    Google Scholar 

Download references

Acknowledgments

I. Jačková (ČGS Praha) and P. Čech (GÚDŠ Bratislava) are thanked for stable isotope analyses. The study was supported by projects GAČR: 205/07/P130 and J07/98: 143 100 004. Chemical analyses of inclusion fluids were supported by a project of the Austrian Academy of Sciences. Constructive comments and suggestions by journal reviewers (P. Alexandre, B. Kříbek and T. Mernagh) and editors (B. Lehmann and P. Polito) helped to improve the initial draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Dolníček.

Additional information

Editorial handling: P.Polito

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolníček, Z., Fojt, B., Prochaska, W. et al. Origin of the Zálesí U–Ni–Co–As–Ag/Bi deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints. Miner Deposita 44, 81–97 (2009). https://doi.org/10.1007/s00126-008-0202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-008-0202-6

Keywords

Navigation