Skip to main content
Log in

Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Petrological, geochemical, and Nd isotopic analyses have been carried out on rock samples from the Rainbow vent field to assess the evolution of the hydrothermal system. The Rainbow vent field is an ultramafic-hosted hydrothermal system located on the Mid-Atlantic Ridge characterized by vigorous high-temperature venting (∼365°C) and unique chemical composition of fluids: high chlorinity, low pH and very high Fe, and rare earth element (REE) contents (Douville et al., Chemical Geology 184:37–48, 2002). Serpentinization has occurred under a low-temperature (<270°C) retrograde regime, later overprinted by a higher temperature sulfide mineralization event. Retrograde serpentinization reactions alone cannot reproduce the reported heat and specific chemical features of Rainbow hydrothermal fluids. The following units were identified within the deposit: (1) nonmineralized serpentinite, (2) mineralized serpentinite—stockwork, (3) steatite, (4) semimassive sulfides, and (5) massive sulfides, which include Cu-rich massive sulfides (up to 28wt% Cu) and Zn-rich massive sulfide chimneys (up to 5wt% Zn). Sulfide mineralization has produced significant changes in the sulfide-bearing rocks including enrichment in transition metals (Cu, Zn, Fe, and Co) and light REE, increase in the Co/Ni ratios comparable to those of mafic Cu-rich volcanic-hosted massive sulfide deposits and different 143Nd/144Nd isotope ratios. Vent fluid chemistry data are indicative of acidic, reducing, and high temperature conditions at the subseafloor reaction zone where fluids undergo phase separation most likely under subcritical conditions (boiling). An explanation for the high chlorinity is not straightforward unless mixing with high salinity brine or direct contribution from a magmatic Cl-rich aqueous fluid is considered. This study adds new data, which, combined with the current knowledge of the Rainbow vent field, brings compelling evidence for the presence, at depth, of a magmatic body, most likely gabbroic, which provides heat and metals to the system. Co/Ni ratios proved to be good tools used to discriminate between rock units, degree of sulfide mineralization, and positioning within the hydrothermal system. Deeper units have Co/Ni <1 and subsurface and surface units have Co/Ni >1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen D, Seyfried WE Jr (2003) Alteration and mass transfer in the MgO-CaO-FeO-Fe2O3-SiO2-Na2O-H2O-HCl system at 400°C and 500 bars: implications for pH and compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges. Geochim Cosmochim Acta 67:1531–1542

    Article  Google Scholar 

  • Allen D, Seyfried WE Jr (2004) Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems. Geochim Cosmochim Acta 67:1347–1354

    Article  Google Scholar 

  • Allen D, Seyfried WE Jr (2005) REE controls in ultramafic hosted MOR hydrothermal systems: an experimental study at elevated temperature and pressure. Geochim Cosmochim Acta 69:675–683

    Article  Google Scholar 

  • Alt JC (1995) Subseafloor processes in the mid-ocean ridge hydrothermal systems. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological and geological interactions. Geophys Monogr 91:85–113 (American Geophysical Union)

  • Alt JC, Shanks WC (2003) Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modelling. Geochim Cosmochim Acta 67:641–653

    Article  Google Scholar 

  • Auclair M, Gauthier M, Trottier J, Jébrak M, Chartrand F (1993) Mineralogy, geochemistry, and paragenesis of the Eastern Metals serpentinite-associated Ni-Cu-Zn deposit, Quebec Appalachians. Econ Geol 88:123–138

    Google Scholar 

  • Bajwah ZU, Seccombe PK, Offler R (1987) Trace element distribution, Co:Ni ratios and genesis of the Big Cadia iron–copper deposit, New South Wales, Australia. Miner Depos 22:292–300

    Article  Google Scholar 

  • Baker ET, German CR (2004) On the global distribution of mid-ocean ridge hydrothermal vent-fields. In: German CR, Lin J, Parson LM (eds) The thermal structure of the oceanic crust and the dynamics of seafloor hydrothermal circulation. Geophys Monogr 148:245–266 (American Geophysical Union)

    Google Scholar 

  • Barrie CT, Hannington MD (1997) Introduction: classification of VMS deposits based on host rock composition. In: Barrie CT, Hannington MD (eds) Volcanic-associated massive sulfide deposits: processes and examples in modern and ancient settings. SEG 8:1–12 (Ottawa)

  • Barriga FJAS, Costa IMA, Relvas JMR, Ribeiro A, Fouquet Y, Ondréas H, Parson L, FLORES Scientific Party (1997) The Rainbow serpentinites and serpentinite-sulphide stock work (Mid-Atlantic Ridge, AMAR segment): a preliminary report of the FLORES results. EOS Abst 78:832

    Google Scholar 

  • Barriga FJAS, Fouquet Y, Almeida A, Biscoito M, Charlou JL, Costa RLP, Dias A, Marques AMSF, Miranda JM, Olu K, Porteiro F, Queiroz M (1998) Discovery of the Saldanha hydrothermal field on the FAMOUS segment of the MAR (36°30′N). AGU fall meeting 1998. EOS Abst 79(45):F67

    Google Scholar 

  • Barriga FJAS, Dias A, Marques AFA, Relvas JMRS, Miranda JM, Queiroz G, Lourenço N, Ferreira A, Fouquet Y, Iyer S, Saldanha Team, Seahma1 Team (2004) Mount Saldanha revisited: low-temperature methane discharge through a sediment-capped serpentinite protrusion (MoMAR Area, Mid-Atlantic Ridge, 36°30′N). In: EGU 1st General Assembly. Nice, France (25–30 April 2004)

  • Batuyev BN, Krotov AG, Markov VF, Cherkashev G, Krasnov SG, Lisitsyn Y (1994) Massive sulfide deposits discovered and sampled at 14°45′N, Mid-Atlantic Ridge. BRIDGE newsl 6:6–10

    Google Scholar 

  • Bralia A, Sabatini G, Troja F (1979) A re-evaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Miner Depos 14:353–374

    Article  Google Scholar 

  • Berndt ME, Allen DE, Seyfried WE Jr (1996) Reduction of CO2 during serpentinization of olivine at 300° and 500 bar. Geology 24(4):351–354

    Article  Google Scholar 

  • Bienvenu P, Bougault H, Joron JL, Treuil M, Dmitriev L (1990) MORB alteration: rare earth element/non-rare-earth hygromagmaphile element fractionation. Chem Geol 82:1–14

    Article  Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1989) Salinity variations in submarine hydrothermal systems by layered double-diffusive convection. J Geol 97:613–623

    Google Scholar 

  • Bogdanov Y, Sagalevitch AM, Chernayev ES, Ashadze AM, Gurvich EZ, Lukashin VN, Ivanov GV, Peresypkin VN (1995) A study of the hydrothermal field at 14°45′N on the Mid-Atlantic Ridge using the “MIR” submersibles. BRIDGE newsl 9:9–13

    Google Scholar 

  • Cave RR, German C, Thomson J, Nesbitt RW (2002) Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14′N on the Mid-Atlantic Ridge. Geochim Cosmochim Acta 66:1905–1923

    Article  Google Scholar 

  • Charlou JL, Donval JP, Douville E, Jean-Baptiste P, Radford-Knoery J, Fouquet Y, Dapoigny A, Stievenard M (2000) Compared geochemical signatures and the evolution of Menez Gwen (37°50′N) and Lucky Strike (37°17′N) hydrothermal fluids, south of the Azores triple junction on the Mid-Atlantic Ridge. Chem Geol 171:49–75

    Article  Google Scholar 

  • Chavagnac V, German C, Milton A, Palmer MR (2005) Sources of REE in sediment cores from the Rainbow vent site (36°14′N, MAR). Chem Geol 216:329–352

    Article  Google Scholar 

  • Costa I (2005) Serpentinization on the Mid-Atlantic Ridge: Rainbow, Saldanha and Menez Hom Sites. Ph.D. thesis, Dep. Geologia, Universidade de Lisboa, p 400

  • Donval JP, Charlou JL, Douville E, Knoery J, Fouquet Y, Ponseveras E, Baptiste PJ, Stievenard M, German C, FLORES Scientific Party (1997) High H2 and CH4 content in hydrothermal fluids from Rainbow site newly sampled at 36°14′N on the AMAR segment, Mid-Atlantic Ridge (diving FLORES cruise, July 1997). Comparison with other MAR sites. EOS Abst 78:832

    Google Scholar 

  • Dosso L, Bougault H, Langmuir C, Bollinger C, Bonnier O, Etoubleau J (1999) The age and distribution of mantle heterogeneity along the Mid-Atlantic Ridge (31–41°N). Earth Planet Sci Lett 170:269–286

    Article  Google Scholar 

  • Douville E, Bienvenu P, Charlou JL, Donval JP, Fouquet Y, Appriou P, Gamo T (1999) Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim Cosmochim Acta 63:627–643

    Article  Google Scholar 

  • Douville E, Charlou JL, Donval JP, Knoery J, Fouquet Y, Bienvenu P, Appriou P, FLORES Scientific Party (1997) Trace elements in fluids from the new Rainbow hydrothermal field (36°14′N, MAR): a comparison with other Mid-Atlantic Ridge fluids. EOS Abst 78:832

    Google Scholar 

  • Douville E, Charlou JL, Oelkers EH, Bienvenu P, Jove Colon CF, Donval JP, Fouquet Y, Prieur D, Appriou P (2002) The Rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol 184:37–48

    Article  Google Scholar 

  • Doyle M, Allen R (2003) Subsea-floor replacement in volcanic-hosted massive sulfide deposits. Ore Geol Rev 23:183–222

    Article  Google Scholar 

  • Drummond SE, Ohmoto H (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ Geol 80:126–147

    Google Scholar 

  • Edmonds HN, German C (2004) Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge. Geochim Cosmochim Acta 68:759–772

    Article  Google Scholar 

  • FLORES Cruise Report (1998) IFREMER, France

  • Fouquet Y, Stackelberg U, Charlou JL, Erzinger J, Herzig PM, Mühe R, Wiedicke M (1993a) Metallogenesis in back-arc environments: the Lau Basin example. Econ Geol 88:2154–2181

    Google Scholar 

  • Fouquet Y, Wafik A, Cambon P, Mevel C, Meyer G, Gente P (1993b) Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23°N). Econ Geol 88:2018–2036

    Google Scholar 

  • Fouquet Y, Knott R, Cambon P, Fallick A, Rickard D, Desbruyeres D (1996) Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12°43′N on the East Pacific Rise. Earth Planet Sci Lett 144:147–162

    Article  Google Scholar 

  • Fouquet Y, Charlou JL, Ondreas H, Radford-Knoery J, Donval JP, Douville E, Apprioual R, Cambon P, Pellé H, Landuré JY, Normand A, Ponsevera E, German C, Parson L, Barriga F, Costa I, Relvas J, Ribeiro A (1997) Discovery and first submersible investigations on the Rainbow hydrothermal field on the MAR (36°14N) AGU fall meeting 1997. EOS Abst 78(46)-Supl-F832

  • Früh-Green G, Kelley DS, Bernasconi SM, Karson JA, Ludwig KA, Butterfield DA, Boschi C, Proskurowski G (2003) 30000 years of hydrothermal activity at the Lost City vent field. Science 301:495–498

    Article  Google Scholar 

  • Fyfe WS (1992) Geosphere interactions on a convecting planet: mixing and separation. In: Hutzinger O (ed) The handbook of environmental chemistry 1. Springer, Berlin Heidelberg New York, pp 1–26

    Google Scholar 

  • German C, Higgs NC, Thomson J, Mills RA, Elderfield H, Blusztajn J, Fleer AP, Bacon MP (1993) A geochemical study of metalliferous sediment from the TAG hydrothermal mound 26°08′N Mid-Atlantic Ridge. J Geophys Res 98:9683–9692

    Article  Google Scholar 

  • German C, Klinkhammer CP, Rudnicki MD (1996) The Rainbow hydrothermal plume, 36°15′N, MAR. Geophys Res Lett 23(21):2979–2982

    Article  Google Scholar 

  • Goodfellow WD, Franklin JM (1993) Geology, mineralogy, and chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, Northern Juan de Fuca Ridge. Econ Geol 88:2037–2068

    Google Scholar 

  • Gràcia E, Charlou JL, Knoery J, Parson LM (2000) Non-transform offsets along the Mid-Atlantic Ridge south of the Azores (38°N–34°N): ultramafic exposures and hosting of hydrothermal vents. Earth Planet Sci Lett 177:89–109

    Article  Google Scholar 

  • Hannington MD, Jonasson IR, Herzig PM, Petersen S (1995) Physical and chemical processes of seafloor mineralization at mid-ocean ridges. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological and geological interactions. Geophys Monogr 91:466 (American Geophysical Union)

  • Hawley JE, Nichol I (1961) Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores. Econ Geol 56:467–487

    Google Scholar 

  • Herzig PM, Hannington MD (1995) Polymetallic massive sulfides at the modern seafloor. A review. Ore Geol Rev 10:95–115

    Article  Google Scholar 

  • Herzig PM, Petersen S, Hannington MD (1998) Geochemistry and sulphur-isotopic composition of the TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N. In: Herzig PM, Humphris SE, Miller DJ, Zierenberg RA (eds) Proceedings of the ocean drilling program scientific results 158:47–70

  • Humphris SE, Herzig PM, Miller S, Alt JC, Becker K, Brown D, Brügmann G, Chiba H, Fouquet Y, Gemmell JB, Guerin JB, Hannington MD, Holm MD, Honnorez J, Iturrino JJ, Knott GJ, Ludwig R, Nakamura K, Petersen S, Reysenbach A, Rona PA, Smith D, Sturz A, Tivey MK, Zhao X (1995) The internal structure of an active seafloor massive sulphide deposit. Nature 377:713–716

    Article  Google Scholar 

  • Huston DL, Sie SH, Suter GF (1995) Selenium and its importance to the study of ore genesis: the theoretical basis and its application to volcanic-hosted massive sulfide deposits using pixeprobe analysis. Nucl Instrum Methods Phys Res B 104:476–480

    Article  Google Scholar 

  • Hutchinson MN, Scott SD (1981) Sphalerite geobarometry in the Cu-Fe-Zn-S system. Econ Geol 76:143–153

    Google Scholar 

  • IRIS Cruise Report (2001) IFREMER, France

  • James RH, Elderfield H, Palmer MR (1995) The chemistry of hydrothermal fluids from the Broken Spur site, 29°N Mid-Atlantic Ridge. Geochim Cosmochim Acta 59:651–659

    Article  Google Scholar 

  • Janecky DR, Seyfried WE Jr (1986) Hydrothermal serpentinization of peridotite within the oceanic crust: experimental investigations of mineralogy and major element chemistry. Geochim Cosmochim Acta 50:1357–1378

    Article  Google Scholar 

  • Kase K, Yamamoto M, Shibata T (1990) Copper-rich sulfide deposit near 23°N, Mid-Atlantic Ridge: chemical composition, mineral chemistry, and sulphur isotopes. In: Detrick R, Honnorez J, Bryan WB, Juteau T (eds) Proceedings of the ocean drilling program scientific results, pp 163–175

  • Kelley D, Karson JA, Blackman DK, Früh-Green GL, Butterfield D, Lilley MD, Olson E, Schrenk M, Roe K, Lebon GT, Rivizzigo P, AT3-60 scientific party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412:145–149

    Article  Google Scholar 

  • Kojima S, Sugaki A (1985) Phase relations in the Cu-Fe-Zn-S System between 500° and 300° under hydrothermal conditions. Econ Geol 80:158–171

    Google Scholar 

  • Lacan F (2002) Masses d’eau des mers nordiques et de l’Atlantique subarctique tracées par les isotopes du néodyme Laboratoire des études géophysiques et océanographiques spatiales. Université Toulouse III, Paul Sabatier, Toulouse, pp 293

  • Langmuir C, Humphris SE, Fornari DJ, Van Dover C, Von Damm KL, Tivey MK, Colodner D, Charlou JL, Desonie D, Wilson C, Fouquet Y, Klinkhammer G, Bougault H (1997) Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37′N on the Mid-Atlantic Ridge. Earth Planet Sci Lett 148:69–91

    Article  Google Scholar 

  • Large R (1992) Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models. Econ Geol 87:471–510

    Article  Google Scholar 

  • Lawrie D, Miller DJ (2000) Data report: sulfide mineral chemistry and petrography from Bent Hill, ODP Mound and TAG massive sulfide deposits. In: Zierenberg RA, Fouquet Y, Miller DJ, Normak WR (eds) Proceedings of the ocean drilling program scientific results, pp 1–34

  • Lein AY, Ulyanova NV, Ulyanov A, Cherkashev ä, Stepanova T (2001) Mineralogy and geochemistry of sulfide ores in ocean-floor hydrothermal fields associated with serpentine protrusions. Rus J Earth Sci 3(5)

  • Loftus-Hills G, Solomon M (1967) Cobalt, nickel and selenium in sulphides as indicators of ore genesis. Miner Depos 2:228–242

    Article  Google Scholar 

  • Loukola-Ruskeeniemi K (1999) Origin of black shales at the serpentinite-associated Cu-Zn-Co ores at Outokumpu, Finland. Econ Geol 94:1007–1028

    Google Scholar 

  • Lowell RP, Rona PA (2002) Seafloor hydrothermal systems driven by the serpentinization of peridotite. Geophys Res Lett 29:26-1–26-4

    Article  Google Scholar 

  • Marques AFA, Barriga FJAS, Fouquet Y (2003) Co:Ni ratio variation throughout the Rainbow hydrothermal system. In: Eliopoulos DG et al (eds) Mineral exploration and sustainable development. Proceedings of the Seventh Biennial SGA Meeting, Athens, Greece, 24–28 August 2003. Millpress, Rotterdam, pp 143–146

    Google Scholar 

  • MacDonald AM, Fyfe WS (1985) Rate of serpentinization in seafloor environments. Tectonophysics 116:123–135

    Article  Google Scholar 

  • McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Metz S, Trefry JH (2000) Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim Cosmochim Acta 64:2267–2279

    Article  Google Scholar 

  • Mével C (2003) Serpentinization of abyssal peridotites at mid-ocean ridges. CR Geoscience 335:825–852

    Article  Google Scholar 

  • Michard A, Albarède F (1986) The REE content of some hydrothermal fluids. Chem Geol 55:51–60

    Article  Google Scholar 

  • Mills RA, Elderfield H (1995) Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26° north, Mid-Atlantic Ridge. Geochim Cosmochim Acta 59:3511–3524

    Article  Google Scholar 

  • Moody JB (1976) Serpentinization: a review. Lithos 9:125–138

    Article  Google Scholar 

  • Mookherjee A, Philip R (1979) Distribution of copper, cobalt and nickel in ores and host rocks, Ingladhol, Karhataka, India. Miner Depos 14:33–55

    Article  Google Scholar 

  • Münch U, Blum N, Halbach P (1999) Mineralogical and geochemical features of sulfides from the MESO zone, Central Indian Ridge. Chem Geol 155:29–44

    Article  Google Scholar 

  • Niu Y, Bideau D, Hekinian R, Batiza R (2001) Mantle compositional control on the extent of mantle melting crust production, gravity anomaly, ridge morphology, and ridge segmentation: a case study at the Mid-Atlantic Ridge 33–35°N. Earth Planet Sci Lett 186:383–399

    Article  Google Scholar 

  • O’Hanley DS (1992) Solution to the volume problem in serpentinization. Geology 20:705–708

    Article  Google Scholar 

  • O’Hanley DS (1996) Serpentinites. Records of tectonics and petrological history. Oxford Univ. Press, New York, p 277

    Google Scholar 

  • Palandri JL, Reed MH (2004) Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochim Cosmochim Acta 68:1115–1133

    Article  Google Scholar 

  • Parson L, Fouquet Y, Ondréas H, Barriga FJAS, Relvas JMR, Ribeiro A, Charlou JL, German C, FLORES Scientific Party (1997) Non-transform discontinuity settings for contrasting hydrothermal systems on the MAR-Rainbow and FAMOUS at 36°14′ and 36°34′N. EOS Abst 78:832

    Google Scholar 

  • Peter J, Scott SD (1997) Windy Craggy, northwestern British Columbia: the world’s largest Besshi-type deposit. In: Barrie CT, Hannington MD (eds) Volcanic associated massive sulfide deposits: processes and examples in modern and ancient settings. Rev Econ Geol 8:261–295

  • Rona PA, Hannington MD, Raman CV, Thompson G, Tivey MK, Humphris SE, Lalou C, Petersen S (1993) Active and relic sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge. Econ Geol 88:1989–2017

    Google Scholar 

  • SALDANHA Cruise Report (1999) Universidade de Lisboa, Portugal

  • Saunders AD, Norry MJ, Tarney J (1988) Origin of MORB and chemically depleted mantle. J Petrol (Special Lithosphere Issue):415–445

    Google Scholar 

  • Seewald JS, Seyfried WE Jr (1990) The effect of temperature on metal mobility in sub seafloor hydrothermal systems: constraints from basalt alteration experiments. Earth Planet Sci Lett 101:388–403

    Article  Google Scholar 

  • SEAHMA Cruise Report (2003) Universidade de Lisboa, Portugal

  • Seyfried WE Jr, Dibble WE Jr (1980) Seawater-peridotite interaction at 300° C and 500 bars: implications for the origin of oceanic serpentinites. Geochim Cosmochim Acta 44:309–321

    Article  Google Scholar 

  • Seyfried WE Jr, Berndt ME, Janecky D (1986) Chloride depletions and enrichments in seafloor hydrothermal fluids: constraints from experimental basalt alteration studies. Geochim Cosmochim Acta 50:469–475

    Article  Google Scholar 

  • Seyfried WE Jr, Ding K (1995) Phase equilibria in sub seafloor hydrothermal systems: a review of the role of redox, temperature, pH and dissolved Cl on the chemistry of hot spring fluids at mid-ocean ridges. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological and geological interactions. Geophys Monogr 91:248–272 (American Geophysical Union)

  • Schroeder T, John B, Frost B (2002) Geologic, implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges. Geology 30:367–370

    Article  Google Scholar 

  • Thurnherr AM, Richards KJ (2001) Hydrography and high-temperature heat flux of the Rainbow hydrothermal site (36°14′N, Mid-Atlantic Ridge). J Geophys Res 106:9411–9426

    Article  Google Scholar 

  • Thurnherr AM, Richards KJ, German CR, Lane-Serff GF, Speer KG (2002) Flow and mixing in the rift valley of the Mid-Atalntic Ridge. J Phys Ocean 132:1763–1778

    Article  Google Scholar 

  • Tivey MK, Humphris SE, Thompson G, Hannington MD, Rona PA (1995) Deducing patterns of fluid flow and mixing within the active TAG hydrothermal mound using mineralogical and geochemical data. J Geophys Res 100:12527–12555

    Article  Google Scholar 

  • Vaughan DJ, Craig JR (1997) Sulfide ore stabilities, morphologies and intergrowth textures. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits (3rd edn). Wiley, New York, pp 367–434

    Google Scholar 

  • Walshe JL, Solomon M (1981) An investigation into the environment of formation of the volcanic-hosted Mt. Lyell copper deposits using geology, mineralogy, stable isotopes and a six component chlorite solid solution model. Econ Geol 76:246–280

    Google Scholar 

  • Wetzel L, Shock EL (2000) Distinguishing ultramafic from basalt hosted submarine hydrothermal systems by comparing calculated vent fluid compositions. J Geophys Res 105:8319–8340

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Claudio Cermignani (University of Toronto) for technical and analytical support with the EPMA and Prof. Martin Sinha (NOC), Gabriela Henriques, and Yannick Beaudoin for improving the English. The manuscript benefited significantly from constructive comments and suggestions from Bernd Lehmann. Fundação Para a Ciência e Tecnologia (FCT) provided funds for the study through Project SEAHMA (FFCUL/FCT-PDCTM/P/MAR/15281/1999) and a Ph.D. scholarship (SFRH/BD/2978/2000) given to A. F. A. Marques. A. F. A. Marques also benefited from a student research grant from the Society of Economic Geologists Foundation. V. Chavagnac was funded by the 2000 National Oceanography Centre, Southampton Research Fellowship. The NERC core strategic science funds the hydrothermal research at NOCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. A. Marques.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, A.F.A., Barriga, F., Chavagnac, V. et al. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge. Miner Deposita 41, 52–67 (2006). https://doi.org/10.1007/s00126-005-0040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-005-0040-8

Keywords

Navigation