Skip to main content
Log in

Deteriorating beta cell function is the dominant determinant of progression from normal glucose tolerance to prediabetes/diabetes in young women following pregnancy

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Excess adiposity, insulin resistance and beta cell dysfunction each contribute to the development of prediabetes (impaired glucose tolerance and/or impaired fasting glucose)/diabetes but their comparative impact in relation to one another remains uncertain. We thus ranked their contributions to incident dysglycaemia over the first 5 years postpartum in women reflecting the full spectrum of gestational glucose tolerance (spanning normoglycaemia to gestational diabetes) and hence a range of future diabetic risk.

Methods

In this study, 302 women with normal glucose tolerance (NGT) on OGTT at 3 months postpartum underwent repeat OGTT at 1 year, 3 years and 5 years, enabling serial assessment of glucose tolerance, insulin sensitivity/resistance (Matsuda index, HOMA-IR) and beta cell function (insulin secretion-sensitivity index-2 [ISSI-2], insulinogenic index [IGI]/HOMA-IR). Determinants of prediabetes/diabetes were ranked by change in concordance index (CCI) of Cox proportional hazard regression models.

Results

Over 5 years of follow-up, 89 women progressed from NGT to prediabetes/diabetes (progressors). At 3 months postpartum, though all women were normoglycaemic, future progressors had higher fasting glucose (p=0.03) and 2 h glucose (p<0.0001) than non-progressors, coupled with higher BMI (p=0.001), greater insulin resistance (both Matsuda index and HOMA-IR, p≤0.02) and poorer beta cell function (both ISSI-2 and IGI/HOMA-IR, p≤0.006). Unlike their peers, progressors exhibited deteriorating beta cell function from 1 year to 5 years (both p<0.0001). On regression analyses, the dominant determinants of progression to prediabetes/diabetes were time-varying ISSI-2 (change in CCI 25.2%) and IGI/HOMA-IR (13.0%), in contrast to time-varying Matsuda index (2.9%) and HOMA-IR (0.5%). Neither time-varying BMI nor waist were significant predictors after adjustment for beta cell function and insulin sensitivity/resistance.

Conclusion/interpretation

Declining beta cell function is the dominant determinant of incident prediabetes/diabetes in young women following pregnancy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CCI:

Concordance index

GCT:

Glucose challenge test

GDM:

Gestational diabetes mellitus

GIGT:

Gestational impaired glucose tolerance

IFG:

Impaired fasting glucose tolerance

IGI:

Insulinogenic index

IGT:

Impaired glucose tolerance

ISSI-2:

Insulin secretion-sensitivity index-2

NGT:

Normal glucose tolerance

References

  1. Yoshinari M, Hirakawa Y, Hata J et al (2021) Comparison of the contributions of impaired beta cell function and insulin resistance to the development of type 2 diabetes in a Japanese community: the Hisayama Study. Diabetologia 64(8):1775–1784. https://doi.org/10.1007/s00125-021-05459-7

    Article  CAS  PubMed  Google Scholar 

  2. Wang T, Lu J, Shi L et al (2020) Association of insulin resistance and β-cell dysfunction with incident diabetes among adults in China: a nationwide, population-based, prospective cohort study. Lancet Diabetes Endocrinol 8(2):115–124. https://doi.org/10.1016/S2213-8587(19)30425-5

    Article  CAS  PubMed  Google Scholar 

  3. Ohn JH, Kwak SH, Cho YM et al (2016) 10-year trajectory of β-cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes Endocrinol 4(1):27–34. https://doi.org/10.1016/S2213-8587(15)00336-8

    Article  CAS  PubMed  Google Scholar 

  4. Lai KZH, Semnani-Azad Z, Retnakaran R, Harris SB, Hanley AJ (2021) Changes in adiposity mediate the associations of diet quality with insulin sensitivity and beta-cell function. Nutr Metab Cardiovasc Dis 31(11):3054–3063. https://doi.org/10.1016/j.numecd.2021.07.025

    Article  CAS  PubMed  Google Scholar 

  5. Morimoto A, Tatsumi Y, Deura et al (2013) Impact of impaired insulin secretion and insulin resistance on the incidence of type 2 diabetes mellitus in a Japanese population: the Saku study. Diabetologia 56(8):1671–1679. https://doi.org/10.1007/s00125-013-2932-y

    Article  CAS  PubMed  Google Scholar 

  6. Lorenzo C, Wagenknecht LE, D’Agostino RB Jr, Rewers MJ, Karter AJ, Haffner SM (2010) Insulin resistance, beta-cell dysfunction, and conversion to type 2 diabetes in a multiethnic population: the Insulin Resistance Atherosclerosis Study. Diabetes Care 33(1):67–72. https://doi.org/10.2337/dc09-1115

    Article  CAS  PubMed  Google Scholar 

  7. Xiang AH, Kjos SL, Takayanagi M, Trigo E, Buchanan TA (2010) Detailed physiological characterization of the development of type 2 diabetes in Hispanic women with prior gestational diabetes mellitus. Diabetes 59(10):2625–30. https://doi.org/10.2337/db10-0521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stancáková A, Javorský M, Kuulasmaa T, Haffner SM, Kuusisto J, Laakso M (2009) Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men. Diabetes 58(5):1212–1221. https://doi.org/10.2337/db08-1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanley AJ, Wagenknecht LE, Norris JM et al (2009) Insulin resistance, beta cell dysfunction and visceral adiposity as predictors of incident diabetes: the Insulin Resistance Atherosclerosis Study (IRAS) Family study. Diabetologia 52(10):2079–86. https://doi.org/10.1007/s00125-009-1464-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tabák AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimäki M, Witte DR (2009) Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373(9682):2215–21. https://doi.org/10.1016/S0140-6736(09)60619-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lyssenko V, Almgren P, Anevski D et al (2005) Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes. Diabetes 54:166–174. https://doi.org/10.2337/diabetes.54.1.166

    Article  CAS  PubMed  Google Scholar 

  12. Weyer C, Tataranni PA, Bogardus C, Pratley RE (2001) Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care 24:89–94. https://doi.org/10.2337/diacare.24.1.89

    Article  CAS  PubMed  Google Scholar 

  13. Bardugo A, Bendor CD, Rotem RS et al (2023) Glucose intolerance in pregnancy and risk of early-onset type 2 diabetes: a population-based cohort study. Lancet Diabetes Endocrinol 11(5):333–344. https://doi.org/10.1016/S2213-8587(23)00062-1

    Article  CAS  PubMed  Google Scholar 

  14. Vounzoulaki E, Khunti K, Abner SC, Tan BK, Davies MJ, Gillies CL (2020) Progression to type 2 diabetes in women with a known history of gestational diabetes: systematic review and meta-analysis. BMJ 369:m1361

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kramer CK, Swaminathan B, Hanley AJ et al (2014) Each degree of glucose intolerance in pregnancy predicts distinct trajectories of beta-cell function, insulin sensitivity and glycemia in the first 3 years postpartum. Diabetes Care 37:3262–3269. https://doi.org/10.2337/dc14-1529

    Article  CAS  PubMed  Google Scholar 

  16. Retnakaran R, Shah BR (2009) Abnormal screening glucose challenge test in pregnancy and future risk of diabetes in young women. Diabet Med 26(5):474–7. https://doi.org/10.1111/j.1464-5491.2009.02712.x

    Article  CAS  PubMed  Google Scholar 

  17. Retnakaran R, Qi Y, Sermer M, Connelly PW, Hanley AJ, Zinman B (2008) Glucose intolerance in pregnancy and future risk of pre-diabetes or diabetes. Diabetes Care 31:2026–31. https://doi.org/10.2337/dc08-0972

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vambergue A, Dognin C, Boulogne A, Réjou MC, Biausque S, Fontaine P (2008) Increasing incidence of abnormal glucose tolerance in women with prior abnormal glucose tolerance during pregnancy: DIAGEST 2 study. Diabet Med 25(1):58–64

    CAS  PubMed  Google Scholar 

  19. Retnakaran R, Ye C, Hanley AJ, Connelly PW, Sermer M, Zinman B (2021) Subtypes of gestational diabetes and future risk of pre-diabetes or diabetes. EClinicalMedicine 40:101087

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kramer CK, Ye C, Hanley AJ et al (2015) Delayed timing of post-challenge peak blood glucose predicts declining beta cell function and worsening glucose tolerance over time: insight from the first year postpartum. Diabetologia 58(6):1354–62. https://doi.org/10.1007/s00125-015-3551-6

    Article  CAS  PubMed  Google Scholar 

  21. Diabetes Canada Clinical Practice Guidelines Expert Committee, Punthakee Z, Goldenberg R, Katz P (2018) Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes 42(Suppl 1):S10–S15. https://doi.org/10.1016/j.jcjd.2017.10.003

    Article  Google Scholar 

  22. Matsuda M, DeFronzo R (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470. https://doi.org/10.2337/diacare.22.9.1462

    Article  CAS  PubMed  Google Scholar 

  23. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419. https://doi.org/10.1007/BF00280883

    Article  CAS  PubMed  Google Scholar 

  24. Retnakaran R, Shen S, Hanley AJ, Vuksan V, Hamilton JK, Zinman B (2008) Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity 16(8):1901–1907. https://doi.org/10.1038/oby.2008.307

    Article  CAS  PubMed  Google Scholar 

  25. Retnakaran R, Qi Y, Goran M, Hamilton J (2009) Evaluation of proposed oral disposition index measures in relation to the actual disposition index. Diabet Med 26:1198–1203. https://doi.org/10.1111/j.1464-5491.2009.02841.x

    Article  CAS  PubMed  Google Scholar 

  26. Santos JL, Yévenes I, Cataldo LR et al (2016) Development and assessment of the disposition index based on the oral glucose tolerance test in subjects with different glycaemic status. J Physiol Biochem 72(2):121–131. https://doi.org/10.1007/s13105-015-0458-0

    Article  CAS  PubMed  Google Scholar 

  27. Harrell FE Jr (2001) Regression modeling strategies, with applications to linear models, logistic regression, and survival analysis. Springer, New York, NY. USA

    Book  Google Scholar 

  28. Færch K, Witte DR, Tabák AG, Perreault L, Herder C, Brunner EJ, Kivimäki M, Vistisen D (2013) Trajectories of cardiometabolic risk factors before diagnosis of three subtypes of type 2 diabetes: a post-hoc analysis of the longitudinal Whitehall II cohort study. Lancet Diabetes Endocrinol 1(1):43–51. https://doi.org/10.1016/S2213-8587(13)70008-1

    Article  PubMed  Google Scholar 

  29. Brambilla P, La Valle E, Falbo R, Limonta G, Signorini S, Cappellini F, Mocarelli P (2011) Normal fasting plasma glucose and risk of type 2 diabetes. Diabetes Care 34(6):1372–1374. https://doi.org/10.2337/dc10-2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nichols GA, Hillier TA, Brown JB (2008) Normal fasting plasma glucose and risk of type 2 diabetes diagnosis. Am J Med 121(6):519–524. https://doi.org/10.1016/j.amjmed.2008.02.026

    Article  CAS  PubMed  Google Scholar 

  31. Tirosh A, Shai I, Tekes-Manova D, Israeli E, Pereg D, Shochat T, Kochba I, Rudich A, Israeli Diabetes Research Group (2005) Normal fasting plasma glucose levels and type 2 diabetes in young men. N Engl J Med 353(14):1454–1462. https://doi.org/10.1056/NEJMoa050080

    Article  CAS  PubMed  Google Scholar 

  32. International Diabetes Federation. IDF Diabetes Atlas, 10th ed. Brussels, Belgium: International Diabetes Federation, 2021. https://www.diabetesatlas.org/en/

  33. Lipscombe LL, Hux JE (2007) Trends in diabetes prevalence, incidence, and mortality in Ontario, Canada 1995–2005: a population-based study. Lancet 369(9563):750–6. https://doi.org/10.1016/S0140-6736(07)60361-4

    Article  PubMed  Google Scholar 

  34. Zinman B, Harris SB, Neuman J et al (2010) Low-dose combination therapy with rosiglitazone and metformin to prevent type 2 diabetes mellitus (CANOE trial): a double-blind randomized controlled study. Lancet 376(9735):103–11. https://doi.org/10.1016/S0140-6736(10)60746-5

    Article  CAS  PubMed  Google Scholar 

  35. American Diabetes Association (2023) Management of diabetes in pregnancy: standards of care in diabetes—2023. Diabetes Care 46(suppl 1):S254–S266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Retnakaran.

Ethics declarations

Acknowledgements

RR holds the Boehringer Ingelheim Chair in Beta-cell Preservation, Function and Regeneration at Mount Sinai Hospital and his research programme is supported by the Sun Life Financial Program to Prevent Diabetes in Women.

Data availability

De-identified data can be made available under restricted access from the corresponding author, for academic purposes, subject to a material transfer agreement and approval of the Mount Sinai Hospital Research Ethics Board.

Funding

This study was supported by operating grants from the Canadian Institutes of Health Research (CIHR) (MOP-84206 and PJT-156286).

Authors’ relationships and activities

The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Contribution statement

RR, CKK, AJH, PWC, MS and BZ designed and implemented the study. CY performed the statistical analyses. RR wrote the manuscript. RR and CY verified the data. All authors critically revised the manuscript for important intellectual content. All authors approved the final manuscript. RR is guarantor, had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 326 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Retnakaran, R., Ye, C., Kramer, C.K. et al. Deteriorating beta cell function is the dominant determinant of progression from normal glucose tolerance to prediabetes/diabetes in young women following pregnancy. Diabetologia 66, 2154–2163 (2023). https://doi.org/10.1007/s00125-023-05994-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-023-05994-5

Keywords

Navigation