Skip to main content

Deficiency of WTAP in islet beta cells results in beta cell failure and diabetes in mice

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Aims/hypothesis

N6-methyladenosine (m6A) mRNA methylation and m6A-related proteins (methyltransferase-like 3 [METTL3], methyltransferase-like 14 [METTL14] and YTH domain containing 1 [YTHDC1]) have been shown to regulate islet beta cell function and the pathogenesis of diabetes. However, whether Wilms’ tumour 1-associating protein (WTAP), a key regulator of the m6A RNA methyltransferase complex, regulates islet beta cell failure during pathogenesis of diabetes is largely unknown. The present study aimed to investigate the role of WTAP in the regulation of islet beta cell failure and diabetes.

Methods

Islet beta cell-specific Wtap-knockout and beta cell-specific Mettl3-overexpressing mice were generated for this study. Blood glucose, glucose tolerance, serum insulin, glucose-stimulated insulin secretion (both in vivo and in vitro), insulin levels, glucagon levels and beta cell apoptosis were examined. RNA-seq and MeRIP-seq were performed, and the data were well analysed.

Results

WTAP was downregulated in islet beta cells in type 2 diabetes, due to lipotoxicity and chronic inflammation, and islet beta cell-specific deletion of Wtap (Wtap-betaKO) induced beta cell failure and diabetes. Wtap-betaKO mice showed severe hyperglycaemia (above 20 mmol/l [360 mg/dl]) from 8 weeks of age onwards. Mechanistically, WTAP deficiency decreased m6A mRNA modification and reduced the expression of islet beta cell-specific transcription factors and insulin secretion-related genes by reducing METTL3 protein levels. Islet beta cell-specific overexpression of Mettl3 partially reversed the abnormalities observed in Wtap-betaKO mice.

Conclusions/interpretation

WTAP plays a key role in maintaining beta cell function by regulating m6A mRNA modification depending on METTL3, and the downregulation of WTAP leads to beta cell failure and diabetes.

Data availability

The RNA-seq and MeRIP-seq datasets generated during the current study are available in the Gene Expression Omnibus database repository (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215156; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215360).

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The RNA-seq and MeRIP-seq datasets generated during the current study are available in the Gene Expression Omnibus database repository (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215156; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215360).

Abbreviations

BAT:

Brown adipose tissue

iBAT:

Interscapular brown adipose tissue

ER:

Endoplasmic reticulum

GO:

Gene Ontology

GSIS:

Glucose-stimulated insulin secretion

KEGG:

Kyoto Encyclopedia of Genes and Genomes

m6A:

N6-methyladenosine

MeRIP-seq:

Methylated RNA immunoprecipitation sequencing

METTL3:

Methyltransferase-like 3

METTL14:

Methyltransferase-like 14

Mettl3-betaKO:

Beta cell-specific Mettl3-knockout

Mettl3-betaOE:

Beta cell-specific Mettl3-overexpressing

NASH:

Non-alcoholic steatohepatitis

NIK:

NF-κB-inducing kinase

PA:

Palmitic acid

qRT-PCR:

Quantitative reverse transcription PCR

RPKM:

Reads per kilobase per million mapped reads

WTAP:

Wilms’ tumour 1-associating protein

Wtap-betaKO:

Beta cell-specific Wtap-knockout

YTHDC1:

YTH domain containing 1

References

  1. Zhang C, Moriguchi T, Kajihara M et al (2005) MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol 25:4969–4976. https://doi.org/10.1128/MCB.25.12.4969-4976.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nishimura W, Takahashi S, Yasuda K (2015) MafA is critical for maintenance of the mature beta cell phenotype in mice. Diabetologia 58:566–574. https://doi.org/10.1007/s00125-014-3464-9

    Article  CAS  PubMed  Google Scholar 

  3. Schaffer AE, Taylor BL, Benthuysen JR et al (2013) Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity. PLoS Genet 9:e1003274–e1003274. https://doi.org/10.1371/journal.pgen.1003274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Cao X, Li LX, Brubaker PL, Edlund H, Drucker DJ (2005) β-Cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1. Diabetes 54:482–491. https://doi.org/10.2337/diabetes.54.2.482

    Article  CAS  PubMed  Google Scholar 

  5. Brissova M, Shiota M, Nicholson WE et al (2002) Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J Biol Chem 277:11225–11232. https://doi.org/10.1074/jbc.M111272200

    Article  CAS  PubMed  Google Scholar 

  6. Gu C, Stein GH, Pan N et al (2010) Pancreatic beta cells require NeuroD to achieve and maintain functional maturity. Cell Metab 11:298–310. https://doi.org/10.1016/j.cmet.2010.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao N, White P, Doliba N, Golson ML, Matschinsky FM, Kaestner KH (2007) Foxa2 Controls vesicle docking and insulin secretion in mature β cells. Cell Metab 6:267–279. https://doi.org/10.1016/j.cmet.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  8. Naylor R, Knight Johnson A, del Gaudio D (1993) Maturity-onset diabetes of the young overview. University of Washington, Seattle, Seattle (WA)

    Google Scholar 

  9. Li X, Jiang Y, Sun X, Wu Y, Chen Z (2021) METTL3 is required for maintaining β-cell function. Metab Clin Exp 116:154702. https://doi.org/10.1016/j.metabol.2021.154702

    Article  CAS  PubMed  Google Scholar 

  10. De Jesus DF, Zhang Z, Kahraman S et al (2019) m(6)A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes. Nat Metab 1:765–774. https://doi.org/10.1038/s42255-019-0089-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu J, Luo G, Sun J et al (2019) METTL14 is essential for β-cell survival and insulin secretion. Biochim Biophys Acta Mol Basis Dis 1865:2138–2148. https://doi.org/10.1016/j.bbadis.2019.04.011

    Article  CAS  PubMed  Google Scholar 

  12. Ping XL, Sun BF, Wang L et al (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–189. https://doi.org/10.1038/cr.2014.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Frye M, Harada BT, Behm M, He C (2018) RNA modifications modulate gene expression during development. Science 361:1346–1349. https://doi.org/10.1126/science.aau1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yue Y, Liu J, He C (2015) RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 29:1343–1355. https://doi.org/10.1101/gad.262766.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Gao M, Zhu F et al (2020) METTL3 is essential for postnatal development of brown adipose tissue and energy expenditure in mice. Nat Commun 11:1648. https://doi.org/10.1038/s41467-020-15488-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li X, Yuan B, Lu M et al (2021) The methyltransferase METTL3 negatively regulates nonalcoholic steatohepatitis (NASH) progression. Nat Commun 12:7213. https://doi.org/10.1038/s41467-021-27539-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X, Ding K, Li X et al (2022) Deficiency of WTAP in hepatocytes induces lipoatrophy and non-alcoholic steatohepatitis (NASH). Nat Commun 13:4549. https://doi.org/10.1038/s41467-022-32163-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Sun J, Lin Z et al (2020) m6A mRNA methylation controls functional maturation in neonatal murine β-cells. Diabetes 69:1708–1722. https://doi.org/10.2337/db19-0906

    Article  PubMed  Google Scholar 

  19. Li X, Yang Y, Chen Z (2023) Downregulation of the m6A reader protein YTHDC1 leads to islet β-cell failure and diabetes. Metab Clin Exp 138:155339. https://doi.org/10.1016/j.metabol.2022.155339

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Li X, Liu C et al (2022) WTAP regulates postnatal development of brown adipose tissue by stabilizing METTL3 in mice. Life Metab. https://doi.org/10.1093/lifemeta/loac028

  21. Herrera PL (2000) Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127:2317–2322. https://doi.org/10.1242/dev.127.11.2317

    Article  CAS  PubMed  Google Scholar 

  22. Hohmeier HE, Mulder H, Chen G, Henkel-Rieger R, Prentki M, Newgard CB (2000) Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49:424–430. https://doi.org/10.2337/diabetes.49.3.424

    Article  CAS  PubMed  Google Scholar 

  23. Chen Z, Morris DL, Jiang L, Liu Y, Rui L (2014) SH2B1 in β-cells regulates glucose metabolism by promoting β-cell survival and islet expansion. Diabetes 63:585–595. https://doi.org/10.2337/db13-0666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ngara M, Wierup N (2022) Lessons from single-cell RNA sequencing of human islets. Diabetologia 65:1241–1250. https://doi.org/10.1007/s00125-022-05699-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Donath MY, Dalmas E, Sauter NS, Boni-Schnetzler M (2013) Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab 17:860–872. https://doi.org/10.1016/j.cmet.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  26. Liu J, Yue Y, Han D et al (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95. https://doi.org/10.1038/nchembio.1432

    Article  CAS  PubMed  Google Scholar 

  27. Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206. https://doi.org/10.1038/nature11112

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Wu Y, Song Y et al (2020) Activation of NF-κB-Inducing kinase in islet β cells causes β cell failure and diabetes. Mol Ther 28:2430–2441. https://doi.org/10.1016/j.ymthe.2020.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson JD, Ahmed NT, Luciani DS et al (2003) Increased islet apoptosis in Pdx1+/- mice. J Clin Investig 111:1147–1160. https://doi.org/10.1172/JCI200316537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Liu (Tianjin Medical University General Hospital, China) for providing RIP-Cre mice. We also thank Y. Han (Novogene Co., China) for assistance in RNA-seq and MeRIP-seq experiments.

Authors’ relationships and activities

The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Contribution statement

XL and YY performed the experiments, collected data, analysed and interpreted data, and drafted the manuscript. ZL, YW and JQ analysed and interpreted data, and revised the manuscript. ZC designed the project and wrote the manuscript. ZC is the guarantor of this work. All authors approved the final version to be published.

Funding

This study was supported by the National Natural Science Foundation of China Grant (92057110 and 31971083 to ZC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 391 kb)

ESM 2

(XLSX 1759 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yang, Y., Li, Z. et al. Deficiency of WTAP in islet beta cells results in beta cell failure and diabetes in mice. Diabetologia (2023). https://doi.org/10.1007/s00125-023-05900-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00125-023-05900-z

Keywords

  • Hyperglycaemia
  • Insulin secretion
  • Islet beta cells
  • METTL3
  • N 6-methyladenosine
  • WTAP