Skip to main content

SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials balancing their risks and benefits

Abstract

Aims/hypothesis

Cardiovascular outcome trials (CVOTs) have demonstrated the benefits of sodium–glucose cotransporter 2 inhibitors (SGLT2i). However, serious adverse drug reactions have been reported. The risk/benefit ratio of SGLT2i remains unquantified. We aimed to provide an estimation of their risk/benefit ratio in individuals with type 2 diabetes.

Methods

We conducted a systematic review (MEDLINE, up to 14 September 2021) and meta-analysis. We included randomised CVOTs assessing SGLT2i in individuals with type 2 diabetes with or without other diseases. We used the Cochrane ‘Risk of bias’ assessment tool. The primary outcomes were overall mortality, major adverse cardiovascular events (MACE), hospitalisation for heart failure (HHF), end-stage renal disease (ESRD), amputation, diabetic ketoacidosis (DKA) and reported genital infections. For each outcome, we estimated the incidence rate ratio (IRR) with a 95% CI; we then computed the number of events expected spontaneously and with SGLT2i.

Results

A total of 46,969 participants from five double-blind, placebo-controlled international trials (weighted mean follow-up 3.5 years) were included. The prevalence of previous CVD ranged from 40.6% to 99.2%. The definition of reported genital infections ranged from ‘genital mycotic infection’ to ‘genital infections that led to discontinuation of the trial regimen or were considered to be serious adverse events’. The number of included studies for each outcomes was five. The use of SGLT2i decreased the risk of all-cause death (IRR 0.86 [95% CI 0.78, 0.95]), MACE (IRR 0.91 [95% CI 0.86, 0.96]), HHF (IRR 0.69 [95% CI 0.62, 0.76]) and ESRD (IRR 0.67 [95% CI 0.53, 0.84]), and increased the risk of DKA (IRR 2.59 [95% CI 1.57, 4.27]) and genital infection (IRR 3.50 [95% CI 3.09, 3.95]) but not of amputation (IRR 1.23 [95% CI 1.00, 1.51]). For 1000 individuals treated over 3.5 years, SGLT2i are expected, on average, to decrease the number of deaths from 70 to 61, to prevent nine MACE, 11 HHF and two cases of ESRD, while inducing two DKA occurrences and 36 genital infections; 778 individuals are expected to avoid all the following outcomes: MACE, HHF, ESRD, amputation, DKA and genital infection.

Conclusions/interpretation

Our study is limited to aggregate data. In a population of individuals with type 2 diabetes and a high CVD risk, the cardiovascular and renal benefits of SGLT2i remain substantial despite the risk of DKA and even the hypothetical risk of amputation.

Trial registration

OSF Registries: https://doi.org/10.17605/OSF.IO/J3R7Y

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Data, codes and other materials are available on request (please contact the corresponding author).

Abbreviations

CVOT:

Cardiovascular outcome trial

DKA:

Diabetic ketoacidosis

ESRD:

End-stage renal disease

HHF:

Hospitalisation for heart failure

IRR:

Incidence rate ratio

MACE:

Major adverse cardiovascular events

SGLT2i:

Sodium–glucose cotransporter 2 inhibitors

References

  1. Einarson TR, Acs A, Ludwig C, Panton UH (2018) Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol 17:83. https://doi.org/10.1186/s12933-018-0728-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 377(7):644–657. https://doi.org/10.1056/NEJMoa1611925

    CAS  Article  PubMed  Google Scholar 

  3. Perkovic V, Jardine MJ, Neal B et al (2019) Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med 380(24):2295–2306. https://doi.org/10.1056/NEJMoa1811744

    CAS  Article  PubMed  Google Scholar 

  4. Wiviott SD, Raz I, Bonaca MP et al (2019) Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 380(4):347–357. https://doi.org/10.1056/NEJMoa1812389

    CAS  Article  PubMed  Google Scholar 

  5. Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 373(22):2117–2128. https://doi.org/10.1056/NEJMoa1504720

    CAS  Article  PubMed  Google Scholar 

  6. Zelniker TA, Wiviott SD, Raz I et al (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393(10166):31–39. https://doi.org/10.1016/S0140-6736(18)32590-X

    CAS  Article  PubMed  Google Scholar 

  7. Zheng SL, Roddick AJ, Aghar-Jaffar R et al (2018) Association Between Use of Sodium-Glucose Cotransporter 2 Inhibitors, Glucagon-like Peptide 1 Agonists, and Dipeptidyl Peptidase 4 Inhibitors With All-Cause Mortality in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA 319(15):1580–1591. https://doi.org/10.1001/jama.2018.3024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Grenet G, Ribault S, Nguyen GB et al (2019) GLUcose COntrol Safety & Efficacy in type 2 DIabetes, a systematic review and NETwork meta-analysis. PLoS One 14(6):e0217701. https://doi.org/10.1371/journal.pone.0217701

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Fei Y, Tsoi M-F, Cheung BMY (2019) Cardiovascular outcomes in trials of new antidiabetic drug classes: a network meta-analysis. Cardiovasc Diabetol 18(1):112. https://doi.org/10.1186/s12933-019-0916-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Davies MJ, D’Alessio DA, Fradkin J et al (2018) Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41(12):2669–2701. https://doi.org/10.2337/dci18-0033

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cosentino F, Grant PJ, Aboyans V et al (2020) 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486

    Article  PubMed  Google Scholar 

  12. Liu J, Li L, Li S et al (2017) Effects of SGLT2 inhibitors on UTIs and genital infections in type 2 diabetes mellitus: a systematic review and meta-analysis. Sci Rep 7(1):2824. https://doi.org/10.1038/s41598-017-02733-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Adimadhyam S, Schumock GT, Calip GS, Smith Marsh DE, Layden BT, Lee TA (2019) Increased risk of mycotic infections associated with sodium-glucose co-transporter 2 inhibitors: a prescription sequence symmetry analysis. Br J Clin Pharmacol 85(1):160–168. https://doi.org/10.1111/bcp.13782

    CAS  Article  PubMed  Google Scholar 

  14. Scheen AJ (2015) SGLT2 inhibition: efficacy and safety in type 2 diabetes treatment. Expert Opin Drug Saf 14(12):1879–1904. https://doi.org/10.1517/14740338.2015.1100167

    CAS  Article  PubMed  Google Scholar 

  15. Fadini GP, Bonora BM, Avogaro A (2017) SGLT2 inhibitors and diabetic ketoacidosis: data from the FDA Adverse Event Reporting System. Diabetologia 60(8):1385–1389. https://doi.org/10.1007/s00125-017-4301-8

    CAS  Article  PubMed  Google Scholar 

  16. Liu J, Li L, Li S et al (2020) Sodium-glucose co-transporter-2 inhibitors and the risk of diabetic ketoacidosis in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 22(9):1619–1627. https://doi.org/10.1111/dom.14075

    CAS  Article  PubMed  Google Scholar 

  17. Adimadhyam S, Lee TA, Calip GS, Smith Marsh DE, Layden BT, Schumock GT (2019) Sodium-glucose co-transporter 2 inhibitors and the risk of fractures: A propensity score-matched cohort study. Pharmacoepidemiol Drug Saf 28(12):1629–1639. https://doi.org/10.1002/pds.4900

    CAS  Article  PubMed  Google Scholar 

  18. Khouri C, Cracowski J-L, Roustit M (2018) SGLT-2 inhibitors and the risk of lower-limb amputation: Is this a class effect? Diabetes Obes Metab 20(6):1531–1534. https://doi.org/10.1111/dom.13255

    CAS  Article  PubMed  Google Scholar 

  19. Tang H, Dai Q, Shi W, Zhai S, Song Y, Han J (2017) SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia 60(10):1862–1872. https://doi.org/10.1007/s00125-017-4370-8

    CAS  Article  PubMed  Google Scholar 

  20. Ueda P, Svanström H, Melbye M et al (2018) Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: nationwide register based cohort study. BMJ 363:k4365. https://doi.org/10.1136/bmj.k4365

    Article  PubMed  PubMed Central  Google Scholar 

  21. Miyashita S, Kuno T, Takagi H et al (2020) Risk of amputation associated with sodium-glucose co-transporter 2 inhibitors: A meta-analysis of five randomized controlled trials. Diabetes Res Clin Pract 163:108136. https://doi.org/10.1016/j.diabres.2020.108136

    CAS  Article  PubMed  Google Scholar 

  22. Palmer SC, Tendal B, Mustafa RA et al (2021) Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ 372:m4573. https://doi.org/10.1136/bmj.m4573

    Article  PubMed  PubMed Central  Google Scholar 

  23. Grenet G, Lajoinie A, Ribault S et al (2017) Protocol of GLUcose COntrol Safety and Efficacy in type 2 DIabetes, a NETwork meta-analysis: GLUCOSE DINET protocol-Rational and design. Fundam Clin Pharmacol 31(3):258–264. https://doi.org/10.1111/fcp.12263

    CAS  Article  PubMed  Google Scholar 

  24. Marilly E, Grenet G, Cucherat M (2020) Benefit risk balance of SGLT2 inhibitors in patients with type 2 diabetes: systematic review and meta-analysis. OSF Registries osf.io/4t25m. https://doi.org/10.17605/OSF.IO/J3R7Y

  25. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  26. Higgins JPT, Altman DG, Gøtzsche PC et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928. https://doi.org/10.1136/bmj.d5928

    Article  PubMed  PubMed Central  Google Scholar 

  27. Buse JB, Wexler DJ, Tsapas A et al (2020) 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43(2):487–493. https://doi.org/10.2337/dci19-0066

    CAS  Article  PubMed  Google Scholar 

  28. Danne T, Garg S, Peters AL et al (2019) International Consensus on Risk Management of Diabetic Ketoacidosis in Patients With Type 1 Diabetes Treated With Sodium–Glucose Cotransporter (SGLT) Inhibitors. Diabetes Care 42(6):1147–1154. https://doi.org/10.2337/dc18-2316

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Musso G, Saba F, Cassader M, Gambino R (2020) Diabetic ketoacidosis with SGLT2 inhibitors. BMJ 371:m4147. https://doi.org/10.1136/bmj.m4147

    Article  PubMed  Google Scholar 

  30. Newcombe RG (2016) MOVER-R confidence intervals for ratios and products of two independently estimated quantities. Stat Methods Med Res 25(5):1774–1778. https://doi.org/10.1177/0962280213502144

    Article  PubMed  Google Scholar 

  31. Newcombe RG, Bender R (2014) Implementing GRADE: calculating the risk difference from the baseline risk and the relative risk. Evid Based Med 19(1):6–8. https://doi.org/10.1136/eb-2013-101340

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schunemann HJ, Higgins JPT, Vist GE et al (2019) Completing ‘Summary of findings’ tables and grading the certainty of the evidence. In: Higgins JPT, Thomas J, Chandler J et al (eds), Cochrane handbook for systematic reviews of interventions, 2nd edn, Ch. 14. Wiley, Chichester

  33. Kuiper J, Marshall I (2015) Package: personograph; Pictographic Representation of Treatment Effects. Available from https://github.com/joelkuiper/personograph. Accessed 15 Jul 2021

  34. Veroniki AA, Bender R, Glasziou P, Straus SE, Tricco AC (2019) The number needed to treat in pairwise and network meta-analysis and its graphical representation. J Clin Epidemiol 111:11–22. https://doi.org/10.1016/j.jclinepi.2019.03.007

    Article  PubMed  Google Scholar 

  35. Winton Centre Cambridge (2021) Communicating the potential benefits and harms of the Astra-Zeneca COVID-19 vaccine. Available from https://wintoncentre.maths.cam.ac.uk/news/communicating-potential-benefits-and-harms-astra-zeneca-covid-19-vaccine/. Accessed 15 Jun 2021

  36. European Medicines Agency (2021) Annex to Vaxzevria Art.5.3 - Visual risk contextualisation. Available from https://www.ema.europa.eu/en/documents/chmp-annex/annex-vaxzevria-art53-visual-risk-contextualisation_en.pdf. Accessed 27 Jul 2022

  37. Harding Center for Risk Literacy. Available from https://www.hardingcenter.de/en/transfer-and-impact/what-you-should-know-about-sars-cov-2-and-covid-19. Accessed 27 Jul 2022

  38. Ihaka R, Gentleman R (1996) R: A Language for Data Analysis and Graphics. J Comput Graph Stat 5(3):299–314. https://doi.org/10.1080/10618600.1996.10474713

    Article  Google Scholar 

  39. Schwarzer G (2007) meta: An R package for meta-analysis. R News 7(3):40-45. Available from https://cran.r-project.org/doc/Rnews/Rnews_2007-3.pdf. Accessed 27 Jul 2022

  40. Bhatt DL, Szarek M, Pitt B et al (2021) Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N Engl J Med 384(2):129–139. https://doi.org/10.1056/NEJMoa2030186

    CAS  Article  PubMed  Google Scholar 

  41. Cannon CP, Pratley R, Dagogo-Jack S et al (2020) Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med 383(15):1425–1435. https://doi.org/10.1056/NEJMoa2004967

    CAS  Article  PubMed  Google Scholar 

  42. Unnikrishnan AG, Kalra S, Purandare V, Vasnawala H (2018) Genital Infections with Sodium Glucose Cotransporter-2 Inhibitors: Occurrence and Management in Patients with Type 2 Diabetes Mellitus. Indian J Endocrinol Metab 22(6):837–842. https://doi.org/10.4103/ijem.IJEM_159_17

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Arakaki RF (2016) Sodium-glucose cotransporter-2 inhibitors and genital and urinary tract infections in type 2 diabetes. Postgrad Med 128(4):409–417. https://doi.org/10.1080/00325481.2016.1167570

    Article  PubMed  Google Scholar 

  44. U.S. Food and Drug Administration (2019) FDA warns about rare occurrences of a serious infection of the genital area with SGLT2 inhibitors for diabetes. Available from https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-rare-occurrences-serious-infection-genital-area-sglt2-inhibitors-diabetes. Accessed 27 Jul 2022

  45. Bhatt DL, Szarek M, Steg PG et al (2021) Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N Engl J Med 384(2):117–128. https://doi.org/10.1056/NEJMoa2030183

    CAS  Article  PubMed  Google Scholar 

  46. Heerspink HJL, Stefánsson BV, Correa-Rotter R et al (2020) Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 383(15):1436–1446. https://doi.org/10.1056/NEJMoa2024816

    CAS  Article  PubMed  Google Scholar 

  47. Visseren FLJ, Mach F, Smulders YM et al (2021) 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 42(34):3227–3337. https://doi.org/10.1093/eurheartj/ehab484

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge G. Simeon, J. Corwin and P. Robinson (DRS, Hospices Civils de Lyon) for their assistance in editing the present article.

Authors’ relationships and activities

MC received consulting fees from Boehringer Ingelheim, Sanofi and AstraZeneca, and speaker honoraria from Sanofi. PM declares the following competing interests: grants from Akcea paid to his institution; advisory board fees from Akcea, Ionis and Boehringer paid to him or his institution; fees for clinical trials from Akcea, Amgen and Novo Nordisk paid to his institution; and fees for talks from Akcea, Amgen, MSD and Novo Nordisk paid to him or his institution. FG received, for his institution, fees from Portola Pharmaceuticals for central reading of ultrasound records, from Neurochlore for DSMB coordination, from EryTech Pharma for modelling projects, from RCTs and stève consultants for exploring French social security database. All other authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Contribution statement

EM, GG and MC designed the study. EM and GG performed the literature search, data extraction and analyses. EM and GG wrote the first draft of the report. JC, NC, CC, RB, PM, J-CL, FG and MC contributed to data interpretation of the findings and provided critical input on important intellectual content. All authors approved the final version of the manuscript. GG is the guarantor of the study.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Grenet.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM

(PDF 1044 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marilly, E., Cottin, J., Cabrera, N. et al. SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials balancing their risks and benefits. Diabetologia (2022). https://doi.org/10.1007/s00125-022-05773-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00125-022-05773-8

Keywords

  • Cardiovascular disease
  • Meta-analysis
  • Risk/benefit ratio
  • SGLT2 inhibitors
  • Systematic review
  • Type 2 diabetes