U.S. Department of Health and Human Services, Office of Disease Prevention and Health Promotion. Healthy People 2030: Social Determinants of Health. Available at https://health.gov/healthypeople/objectives-and-data/social-determinants-health. Accessed 14 Feb 2022
Gillies CL, Abrams KR, Lambert PC et al (2007) Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ 334(7588):299. https://doi.org/10.1136/bmj.39063.689375.55
Article
PubMed
PubMed Central
Google Scholar
Unwin N, Whiting D, Roglic G (2010) Social determinants of diabetes and challenges of prevention. Lancet 375(9733):2204–2205. https://doi.org/10.1016/S0140-6736(10)60840-9
Article
PubMed
Google Scholar
White M (2016) Population approaches to prevention of type 2 diabetes. PLoS Med 13(7):e1002080. https://doi.org/10.1371/journal.pmed.1002080
Article
PubMed
PubMed Central
Google Scholar
Chung WK, Erion K, Florez JC et al (2020) Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of diabetes (EASD). Diabetologia 63(9):1671–1693. https://doi.org/10.1007/S00125-020-05181-W
Article
PubMed
PubMed Central
Google Scholar
Zeevi D, Korem T, Zmora N et al (2015) Personalised nutrition by prediction of glycemic responses. Cell 163(5):1079–1094. https://doi.org/10.1016/j.cell.2015.11.001
CAS
Article
PubMed
Google Scholar
Thaiss CA, Itav S, Rothschild D et al (2016) Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540(7634):544–551. https://doi.org/10.1038/nature20796
CAS
Article
PubMed
Google Scholar
Korem T, Zeevi D, Zmora N et al (2017) Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab 25(6):1243–1253.e5. https://doi.org/10.1016/j.cmet.2017.05.002
CAS
Article
PubMed
Google Scholar
Mendes-Soares H, Raveh-Sadka T, Azulay S et al (2019) Assessment of a personalized approach to predicting postprandial glycemic responses to food among individuals without diabetes. JAMA Netw Open 2(2):e188102. https://doi.org/10.1001/jamanetworkopen.2018.8102
Article
PubMed
PubMed Central
Google Scholar
Berry SE, Valdes AM, Drew DA et al (2020) Human postprandial responses to food and potential for precision nutrition. Nat Med 26(6):964–973. https://doi.org/10.1038/s41591-020-0934-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang DD, Hu FB (2018) Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol 6(5):416–426. https://doi.org/10.1016/S2213-8587(18)30037-8
Article
PubMed
Google Scholar
Bashiardes S, Godneva A, Elinav E, Segal E (2018) Towards utilization of the human genome and microbiome for personalized nutrition. Curr Opin Biotechnol 51:57–63. https://doi.org/10.1016/J.COPBIO.2017.11.013
CAS
Article
PubMed
Google Scholar
de Toro-Martín J, Arsenault BJ, Després JP, Vohl MC (2017) Precision nutrition: a review of personalized nutritional approaches for the prevention and management of metabolic syndrome. Nutrients 9(8):913. https://doi.org/10.3390/NU9080913
Article
PubMed Central
Google Scholar
U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. 9th Edition. December 2020. Available at http://www.dietaryguidelines.gov. Accessed 28 Jan 2022
Ley SH, Hamdy O, Mohan V, Hu FB (2014) Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 383(9933):1999–2007. https://doi.org/10.1016/S0140-6736(14)60613-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Mozaffarian D (2016) Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 133(2):187–225. https://doi.org/10.1161/CIRCULATIONAHA.115.018585
CAS
Article
PubMed
PubMed Central
Google Scholar
Evert AB, Dennison M, Gardner CD et al (2019) Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care 42(5):731–754. https://doi.org/10.2337/dci19-0014
Article
PubMed
PubMed Central
Google Scholar
Forouhi NG, Krauss RM, Taubes G, Willett W (2018) Dietary fat and cardiometabolic health: evidence, controversies, and consensus for guidance. BMJ 361:k2139
Article
Google Scholar
Trepanowski JF, Kroeger CM, Barnosky A et al (2017) Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA Intern Med 177(7):930–938. https://doi.org/10.1001/JAMAINTERNMED.2017.0936
Article
PubMed
PubMed Central
Google Scholar
Schulze MB, Martínez-González MA, Fung TT, Lichtenstein AH, Forouhi NG (2018) Food based dietary patterns and chronic disease prevention. BMJ 361:k239. https://doi.org/10.1136/bmj.k2396
Article
Google Scholar
Spector TD, Gardner CD (2020) Challenges and opportunities for better nutrition science-an essay by Tim Spector and Christopher Gardner. BMJ 369:m2470. https://doi.org/10.1136/BMJ.M2470
Article
PubMed
PubMed Central
Google Scholar
Johnston BC, Kanters S, Bandayrel K et al (2014) Comparison of weight loss among named diet programs in overweight and obese adults: a meta-analysis. JAMA 312(9):923–933. https://doi.org/10.1001/jama.2014.10397
CAS
Article
PubMed
Google Scholar
Ge L, Sadeghirad B, Ball GDC et al (2020) Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. BMJ 369:m696. https://doi.org/10.1136/BMJ.M696
Article
PubMed
PubMed Central
Google Scholar
Martins C, Gower BA, Hill JO, Hunter GR (2020) Metabolic adaptation is not a major barrier to weight-loss maintenance. Am J Clin Nut 112(3):558–565. https://doi.org/10.1093/AJCN/NQAA086
Article
Google Scholar
Hall KD, Sacks G, Chandramohan D et al (2011) Quantification of the effect of energy imbalance on bodyweight. Lancet 378(9793):826–837. https://doi.org/10.1016/S0140-6736(11)60812-X
Article
PubMed
Google Scholar
Guo J, Brager DC, Hall KD (2018) Simulating long-term human weight-loss dynamics in response to calorie restriction. Am J Clin Nut 107(4):558. https://doi.org/10.1093/AJCN/NQX080
Article
Google Scholar
Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L (2014) The many faces of diabetes: a disease with increasing heterogeneity. Lancet 383(9922):1084–1094. https://doi.org/10.1016/S0140-6736(13)62219-9
Article
PubMed
Google Scholar
Ahlqvist E, Storm P, Käräjämäki A et al (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 6(5):361–369. https://doi.org/10.1016/S2213-8587(18)30051-2
Article
PubMed
Google Scholar
Udler MS, Kim J, von Grotthuss M et al (2018) Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med 15(9):e1002654. https://doi.org/10.1371/journal.pmed.1002654
CAS
Article
PubMed
PubMed Central
Google Scholar
Mahajan A, Wessel J, Willems SM et al (2018) Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat Gen 50(4):559–571. https://doi.org/10.1038/S41588-018-0084-1
CAS
Article
Google Scholar
Lingvay I, Sumithran P, Cohen RV, le Roux CW (2022) Obesity management as a primary treatment goal for type 2 diabetes: time to reframe the conversation. Lancet 399(10322):394–405. https://doi.org/10.1016/S0140-6736(21)01919-X
CAS
Article
PubMed
Google Scholar
Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6):393–403. https://doi.org/10.1056/NEJMoa012512
CAS
Article
PubMed
Google Scholar
Gregg EW, Jakicic JM, Blackburn G et al (2016) Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol 4(11):913–921. https://doi.org/10.1016/S2213-8587(16)30162-0
Article
PubMed
PubMed Central
Google Scholar
Ma C, Avenell A, Bolland M et al (2017) Effects of weight loss interventions for adults who are obese on mortality, cardiovascular disease, and cancer: systematic review and meta-analysis. BMJ 359:j4849. https://doi.org/10.1136/BMJ.J4849
Article
PubMed
PubMed Central
Google Scholar
Lean MEJ, Leslie WS, Barnes AC et al (2019) Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol 7(5):344–355. https://doi.org/10.1016/S2213-8587(19)30068-3
Article
PubMed
Google Scholar
Gardner CD, Trepanowski JF, Del Gobbo LC et al (2018) Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: the DIETFITS randomized clinical trial. JAMA 319(7):667–679. https://doi.org/10.1001/JAMA.2018.0245
CAS
Article
PubMed
PubMed Central
Google Scholar
Apolzan JW, Venditti EM, Edelstein SL et al (2019) Long-term weight loss with metformin or lifestyle intervention in the diabetes prevention program outcomes study. Ann Inter Med 170(10):682–690. https://doi.org/10.7326/M18-1605
Article
Google Scholar
Fan S, Hansen ME, Lo Y, Tishkoff SA (2016) Going global by adapting local: a review of recent human adaptation. Science 354(6308):54–59. https://doi.org/10.1126/SCIENCE.AAF5098
CAS
Article
PubMed
PubMed Central
Google Scholar
The SIGMA Type 2 Diabetes Consortium, Williams AL, Jacobs SBR et al (2014) Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506(7486):97–101. https://doi.org/10.1038/nature12828
CAS
Article
Google Scholar
Ainbinder A, Zhao L, Glover P et al (2021) Mct11 deficiency alters hepatic glucose metabolism and energy homeostasis. bioRxiv 2021.09.08.459307. https://doi.org/10.1101/2021.09.08.459307
Qi L, Cornelis MC, Zhang C, van Dam RM, Hu FB (2009) Genetic predisposition, Western dietary pattern, and the risk of type 2 diabetes in men. Am J Clin Nut 89(5):1453–1458. https://doi.org/10.3945/ajcn.2008.27249
CAS
Article
Google Scholar
Langenberg C, Sharp SJ, Franks PW et al (2014) Gene-lifestyle interaction and type 2 diabetes: the EPIC InterAct case-cohort study. PLoS Med 11(5):e1001647. https://doi.org/10.1371/journal.pmed.1001647
CAS
Article
PubMed
PubMed Central
Google Scholar
Merino J, Guasch-Ferre M, Ellervik C et al (2019) Quality of dietary fat and genetic risk of type 2 diabetes: individual participant data meta-analysis. BMJ 366:l4392. https://doi.org/10.1136/bmj.l4292
Article
Google Scholar
Said MA, Verweij N, van der Harst P (2018) Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK biobank study. JAMA Cardiol 3(8):693–702. https://doi.org/10.1001/JAMACARDIO.2018.1717
Article
PubMed
PubMed Central
Google Scholar
Abdu-Ali GS, Mehta RS, Lloyd-Price J et al (2018) Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nat Microbiol 3(3):356–366. https://doi.org/10.1038/S41564-017-0084-4
Article
Google Scholar
Tett A, Huang KD, Asnicar F et al (2019) The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. Cell Host Microbe 26(5):666–679.e7. https://doi.org/10.1016/J.CHOM.2019.08.018
CAS
Article
PubMed
PubMed Central
Google Scholar
Li J, Li Y, Ivey KL et al (2022) Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: findings from a longitudinal cohort of US men. Gut 71(4):724–733. https://doi.org/10.1136/GUTJNL-2020-322473
Article
PubMed
Google Scholar
Qi Q, Li J, Yu B et al (2021) Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut. Online ahead of print. https://doi.org/10.1136/GUTJNL-2021-324053
Ben-Yacov O, Godneva A, Rein M et al (2021) Personalised postprandial glucose response-targeting diet versus Mediterranean diet for glycemic control in prediabetes. Diabetes Care 44(9):1980–1991. https://doi.org/10.2337/DC21-0162
CAS
Article
PubMed
Google Scholar
McCarthy MI (2017) Painting a new picture of personalised medicine for diabetes. Diabetologia 60(5):793–799. https://doi.org/10.1007/s00125-017-4210-x
Article
PubMed
PubMed Central
Google Scholar
McCarthy M, Birney E (2021) Personalized profiles for disease risk must capture all facets of health. Nature 597(7875):175–177. https://doi.org/10.1038/D41586-021-02401-0
CAS
Article
PubMed
Google Scholar
Bancks MP, Chen H, Balasubramanyam A et al (2021) Type 2 diabetes subgroups, risk for complications, and differential effects due to an intensive lifestyle intervention. Diabetes Care 44(5):1203–1210. https://doi.org/10.2337/DC20-2372
CAS
Article
PubMed
PubMed Central
Google Scholar
Goodpaster BH, Sparks LM (2017) Metabolic flexibility in health and disease. Cell Metab 25(5):1027–1036. https://doi.org/10.1016/J.CMET.2017.04.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Wells JCK (2019) The diabesity epidemic in the light of evolution: insights from the capacity-load model. Diabetologia 62(10):1740–1750. https://doi.org/10.1007/S00125-019-4944-8
Article
PubMed
PubMed Central
Google Scholar
Johnson JD (2021) On the causal relationships between hyperinsulinaemia, insulin resistance, obesity and dysglycaemia in type 2 diabetes. Diabetologia 64(10):2138–2146. https://doi.org/10.1007/S00125-021-05505-4
CAS
Article
PubMed
Google Scholar
Kohnert KD, Augstein P, Zander E et al (2009) Glycemic variability correlates strongly with postprandial β-cell dysfunction in a segment of type 2 diabetic patients using oral hypoglycemic agents. Diabetes Care 32(6):1058–1062. https://doi.org/10.2337/DC08-1956
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoshino M, Kayser BD, Yoshino J et al (2020) Effects of diet versus gastric bypass on metabolic function in diabetes. N Engl J Med 383(8):721–732. https://doi.org/10.1056/NEJMOA2003697
CAS
Article
PubMed
PubMed Central
Google Scholar
Greenway FL (2015) Physiological adaptations to weight loss and factors favouring weight regain. Int J Ob 39(8):1188–1196. https://doi.org/10.1038/IJO.2015.59
CAS
Article
Google Scholar
Wyatt P, Berry SE, Finlayson G et al (2021) Postprandial glycaemic dips predict appetite and energy intake in healthy individuals. Nat Metab 3(4):523–529. https://doi.org/10.1038/S42255-021-00383-X
CAS
Article
PubMed
PubMed Central
Google Scholar
Freedman LS, Schatzkin A, Midthune D, Kipnis V (2011) Dealing with dietary measurement error in nutritional cohort studies. J Natl Cancer Inst 103(14):1086–1092. https://doi.org/10.1093/JNCI/DJR189
Article
PubMed
PubMed Central
Google Scholar
Howard R, Guo J, Hall KD (2020) Imprecision nutrition? Different simultaneous continuous glucose monitors provide discordant meal rankings for incremental postprandial glucose in subjects without diabetes. Am J Clin Nutr 112(4):1114–1119. https://doi.org/10.1093/ajcn/nqaa198
Article
PubMed
PubMed Central
Google Scholar
Merino J, Linenberg I, Bermingham KM et al (2022) Validity of continuous glucose monitoring for categorizing glycemic responses to diet: implications for use in personalized nutrition. Am J Clin Nutr. Online ahead of print. https://doi.org/10.1093/AJCN/NQAC026
Potter T, Vieira R, de Roos B (2021) Perspective: application of N-of-1 methods in personalized nutrition research. Adv Nutr 12(3):579–589. https://doi.org/10.1093/ADVANCES/NMAA173
Article
PubMed
PubMed Central
Google Scholar
Senn S (2018) Statistical pitfalls of personalised medicine. Nature 563(7733):619–621. https://doi.org/10.1038/D41586-018-07535-2
CAS
Article
PubMed
Google Scholar
Schüssler-Fiorenza Rose SM, Contrepois K, Moneghetti KJ et al (2019) A longitudinal big data approach for precision health. Nat Med 25(5):792–804. https://doi.org/10.1038/s41591-019-0414-6
CAS
Article
PubMed
Google Scholar
Zhou W, Sailani MR, Contrepois K et al (2019) Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569(7758):663–671. https://doi.org/10.1038/s41586-019-1236-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Hall H, Perelman D, Breschi A et al (2018) Glucotypes reveal new patterns of glucose dysregulation. PLoS Biol 16(7):e2005143. https://doi.org/10.1371/journal.pbio.2005143
CAS
Article
PubMed
PubMed Central
Google Scholar
Diabetes Prevention Program Research Group (2012) The 10-year cost-effectiveness of lifestyle intervention or metformin for diabetes prevention: an intent-to-treat analysis of the DPP/DPPOS. Diabetes Care 35(4):723–730. https://doi.org/10.2337/dc11-1468
CAS
Article
Google Scholar
The Global Nutrition Report’s Independent Expert Group https://globalnutritionreport.org/reports/2020-global-nutrition-report/2020-global-nutrition-report-context-covid-19/. Accessed 6 Jan 2022
International Diabetes Federation. IDF Diabetes Atlas. http://www.diabetesatlas.org. Accessed 14 Feb 2022
Popkin BM, Barquera S, Corvalan C et al (2021) Towards unified and impactful policies to reduce ultra-processed food consumption and promote healthier eating. Lancet Diabetes Endocrinol 9(7):462–470. https://doi.org/10.1016/S2213-8587(21)00078-4
Article
PubMed
PubMed Central
Google Scholar
Pell D, Mytton O, Penney TL et al (2021) Changes in soft drinks purchased by British households associated with the UK soft drinks industry levy: controlled interrupted time series analysis. BMJ 372:n254. https://doi.org/10.1136/bmj.n254
Article
PubMed
PubMed Central
Google Scholar
Sánchez-Romero LM, Canto-Osorio F, González-Morales R et al (2020) Association between tax on sugar sweetened beverages and soft drink consumption in adults in Mexico: open cohort longitudinal analysis of health workers cohort study. BMJ 369:m1311. https://doi.org/10.1136/BMJ.M1311
Article
PubMed
PubMed Central
Google Scholar