Constantinou C, Karavia EA, Xepapadaki E et al (2016) Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 310(1):E1–E14. https://doi.org/10.1152/ajpendo.00429.2015
Article
PubMed
Google Scholar
Karavia EA, Zvintzou E, Petropoulou PI, Xepapadaki E, Constantinou C, Kypreos KE (2014) HDL quality and functionality: What can proteins and genes predict? Expert Rev Cardiovasc Ther 12(4):521–532. https://doi.org/10.1586/14779072.2014.896741
CAS
Article
PubMed
Google Scholar
Xepapadaki E, Zvintzou E, Kalogeropoulou C, Filou S, Kypreos KE (2020) Τhe Antioxidant Function of HDL in Atherosclerosis. Angiology 71:112–121. https://doi.org/10.1177/0003319719854609
CAS
Article
PubMed
Google Scholar
Tsompanidi EM, Brinkmeier MS, Fotiadou EH, Giakoumi SM, Kypreos KE (2010) HDL biogenesis and functions: Role of HDL quality and quantity in atherosclerosis. Atherosclerosis 208(1):3–9. https://doi.org/10.1016/j.atherosclerosis.2009.05.034
CAS
Article
PubMed
Google Scholar
Gofman JW, Glazier F, Tamplin A, Strisower B, De LO (1954) Lipoproteins, coronary heart disease, and atherosclerosis. Physiol Rev 34(3):589–607. https://doi.org/10.1152/physrev.1954.34.3.589
CAS
Article
PubMed
Google Scholar
Miller GJ, Miller NE (1975) Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet 1(7897):16–19. https://doi.org/10.1016/s0140-6736(75)92376-4
CAS
Article
PubMed
Google Scholar
Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A (2002) HDL and arteriosclerosis: Beyond reverse cholesterol transport. Atherosclerosis 161(1):1–16. https://doi.org/10.1016/S0021-9150(01)00651-7
CAS
Article
PubMed
Google Scholar
Nagao M, Nakajima H, Toh R, Hirata KI, Ishida T (2018) Cardioprotective effects of high-density lipoprotein beyond its anti-atherogenic action. J Atheroscler Thromb 25:985–993. https://doi.org/10.5551/jat.RV17025
CAS
Article
PubMed
PubMed Central
Google Scholar
Zvintzou E, Skroubis G, Chroni A et al (2014) Effects of bariatric surgery on HDL structure and functionality: Results from a prospective trial. J Clin Lipidol 8(4):408–417. https://doi.org/10.1016/j.jacl.2014.05.001
Article
PubMed
Google Scholar
Kavo AE, Rallidis LS, Sakellaropoulos GC et al (2012) Qualitative characteristics of HDL in young patients of an acute myocardial infarction. Atheroscler 220(1):257–264. https://doi.org/10.1016/j.atherosclerosis.2011.10.017
CAS
Article
Google Scholar
Filou S, Lhomme M, Karavia EA et al (2016) Distinct Roles of Apolipoproteins A1 and e in the Modulation of High-Density Lipoprotein Composition and Function. Biochemistry 55(27):3752–3762. https://doi.org/10.1021/acs.biochem.6b00389
CAS
Article
PubMed
Google Scholar
Zvintzou E, Lhomme M, Chasapi S et al (2017) Pleiotropic effects of apolipoprotein C3 on HDL functionality and adipose tissue metabolic activity. J Lipid Res 58(9):1869–1883. https://doi.org/10.1194/jlr.M077925
CAS
Article
PubMed
PubMed Central
Google Scholar
Zvintzou E, Xepapadaki E, Kalogeropoulou C, Filou S, Kypreos KE (2020) Pleiotropic effects of apolipoprotein A-II on high-density lipoprotein functionality, adipose tissue metabolic activity and plasma glucose homeostasis. J Biomed Res 34(1):14–26. https://doi.org/10.7555/JBR.33.20190048
Article
PubMed Central
Google Scholar
Voight BF, Peloso GM, Orho-Melander M et al (2012) Plasma HDL cholesterol and risk of myocardial infarction: A mendelian randomisation study. Lancet 380(9841):572–580. https://doi.org/10.1016/S0140-6736(12)60312-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Haase CL, Tybjærg-Hansen A, Ali Qayyum A, Schou J, Nordestgaard BG, Frikke-Schmidt R (2012) LCAT, HDL cholesterol and ischemic cardiovascular disease: A mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab 97(2):248–256. https://doi.org/10.1210/jc.2011-1846
CAS
Article
Google Scholar
Fall T, Xie W, Poon W et al (2015) Using genetic variants to assess the relationship between circulating lipids and type 2 diabetes. Diabetes 64(7):2676–2684. https://doi.org/10.2337/db14-1710
CAS
Article
PubMed
Google Scholar
Swerdlow DI, Preiss D, Kuchenbaecker KB et al (2015) HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: Evidence from genetic analysis and randomised trials. Lancet 385(9965):351–361. https://doi.org/10.1016/S0140-6736(14)61183-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Swerdlow DI, Sattar N (2015) Blood lipids and type 2 diabetes risk: Can genetics help untangle the web? Diabetes 64:2344–2345. https://doi.org/10.2337/db15-0458
CAS
Article
PubMed
Google Scholar
Thomas DG, Wei Y, Tall AR (2021) Lipid and metabolic syndrome traits in coronary artery disease: A Mendelian randomization study. J Lipid Res 62:100044. https://doi.org/10.1194/JLR.P120001000
CAS
Article
PubMed
PubMed Central
Google Scholar
Bowe B, Xie Y, Xian H, Balasubramanian S, Zayed MA, Al-Aly Z (2016) High density lipoprotein cholesterol and the risk of all-cause mortality among U.S. veterans. Clin J Am Soc Nephrol 11(10):1784–1793. https://doi.org/10.2215/CJN.00730116
CAS
Article
PubMed
PubMed Central
Google Scholar
Ko DT, Alter DA, Guo H et al (2016) High-Density Lipoprotein Cholesterol and Cause-Specific Mortality in Individuals Without Previous Cardiovascular Conditions: The CANHEART Study. J Am Coll Cardiol 68(19):2073–2083. https://doi.org/10.1016/j.jacc.2016.08.038
CAS
Article
PubMed
Google Scholar
Madsen CM, Varbo A, Nordestgaard BG (2017) Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality inmen and women: Two prospective cohort studies. Eur Heart J 38(32):2478–2486. https://doi.org/10.1093/eurheartj/ehx163
CAS
Article
PubMed
Google Scholar
Kannel WB (1983) High-density lipoproteins: Epidemiologic profile and risks of coronary artery disease. Am J Cardiol 52(4):9–12. https://doi.org/10.1016/0002-9149(83)90649-5
Article
Google Scholar
Kypreos KE, Bitzur R, Karavia EA, Xepapadaki E, Panayiotakopoulos G, Constantinou C (2019) Pharmacological Management of Dyslipidemia in Atherosclerosis: Limitations, Challenges, and New Therapeutic Opportunities. Angiology 70(3):197–209. https://doi.org/10.1177/0003319718779533
CAS
Article
PubMed
Google Scholar
Bowman L, Hopewell JC, Chen F et al (2018) Effects of Anacetrapib in Patients With Atherosclerotic Vascular Disease. J Vasc Surg 67(1):356. https://doi.org/10.1016/j.jvs.2017.11.029
Article
Google Scholar
Zeman M, Vecka M, Perlík F et al (2015) Niacin in the treatment of hyperlipidemias in light of new clinical trials: Has niacin lost its place? Med Sci Monit 21:2156–2162. https://doi.org/10.12659/MSM.893619
CAS
Article
PubMed
PubMed Central
Google Scholar
Boden WE, Probstfield JL, Anderson T et al (2011) Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy. N Engl J Med 365(24):2255–2267. https://doi.org/10.1056/nejmoa1107579
Article
PubMed
Google Scholar
Landray MJ, Haynes R, Hopewell JC et al (2014) Effects of Extended-Release Niacin with Laropiprant in High-Risk Patients. N Engl J Med 371(3):203–212. https://doi.org/10.1056/nejmoa1300955
Article
PubMed
Google Scholar
Tardy C, Goffinet M, Boubekeur N et al (2014) CER-001, a HDL-mimetic, stimulates the reverse lipid transport and atherosclerosis regression in high cholesterol diet-fed LDL-receptor deficient mice. Atherosclerosis 232(1):110–118. https://doi.org/10.1016/j.atherosclerosis.2013.10.018
CAS
Article
PubMed
Google Scholar
Nicholls SJ, Andrews J, Kastelein JJP et al (2018) Effect of serial infusions of CER-001, a pre-β High-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 atherosclerosis regression acute coronary syndrome trial: A randomized clinical tria. JAMA Cardiol 3(9):815–822. https://doi.org/10.1001/jamacardio.2018.2121
Article
PubMed
PubMed Central
Google Scholar
Shaw JA, Bobik A, Murphy A et al (2008) Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circ Res 103(10):1084–1091. https://doi.org/10.1161/CIRCRESAHA.108.182063
CAS
Article
PubMed
Google Scholar
Tardif JC, Grégoire J, L’Allier PL et al (2007) Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: A randomized controlled trial. J Am Med Assoc 297(15):1675–1682. https://doi.org/10.1001/jama.297.15.jpc70004
Article
Google Scholar
Gibson CM, Korjian S, Tricoci P et al (2016) Safety and Tolerability of CSL112, a Reconstituted, Infusible, Plasma-Derived Apolipoprotein A-I, after Acute Myocardial Infarction: The AEGIS-I Trial (ApoA-I Event Reducing in Ischemic Syndromes I). Circulation 134(24):1918–1930. https://doi.org/10.1161/CIRCULATIONAHA.116.025687
CAS
Article
Google Scholar
Diditchenko S, Gille A, Pragst I et al (2013) Novel formulation of a reconstituted high-density lipoprotein (CSL112) dramatically enhances ABCA1-dependent cholesterol efflux. Arterioscler Thromb Vasc Biol 33(9):2202–2211. https://doi.org/10.1161/ATVBAHA.113.301981
CAS
Article
PubMed
Google Scholar
ClinicalTrials.gov (2018) Identifier NCT03473223, Study to investigate CSL112 in subjects with acute coronary syndrome (AEGIS-II). Available from: https://clinicaltrials.gov/ct2/show/NCT03473223. Accessed 8 June 2021
D’Souza W, Stonik JA, Murphy A et al (2010) Structure/function relationships of apolipoprotein A-I mimetic peptides: Implications for antiatherogenic activities of high-density lipoprotein. Circ Res 107(2):217–227. https://doi.org/10.1161/CIRCRESAHA.110.216507
CAS
Article
PubMed
PubMed Central
Google Scholar
Van Lenten BJ, Wagner AC, Jung CL et al (2008) Anti-inflammatory apoA-I-mimetic peptides bind oxidized lipids with much higher affinity than human apoA-I. J Lipid Res 49(11):2302–2311. https://doi.org/10.1194/jlr.M800075-JLR200
CAS
Article
PubMed
PubMed Central
Google Scholar
Navab M, Hama S, Hough G, Reddy S, Anantharamaiah M, Fogelman A (2003) Oral administration of the apoA-I mimetic peptide D-4F causes the rapid formation and clearance of small anti-inflammatory HDL-like particles in mice. Circ 108(17):232
Google Scholar
Navab M, Anantharamaiah GM, Reddy ST et al (2004) Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation 109(25):3215–3220. https://doi.org/10.1161/01.CIR.0000134275.90823.87
CAS
Article
PubMed
Google Scholar
Dunbar RL, Movva R, Bloedon LAT et al (2017) Oral Apolipoprotein A-I Mimetic D-4F Lowers HDL-Inflammatory Index in High-Risk Patients: A First-in-Human Multiple-Dose, Randomized Controlled Trial. Clin Transl Sci 10(6):455–469. https://doi.org/10.1111/cts.12487
CAS
Article
PubMed
PubMed Central
Google Scholar
Saeedi P, Petersohn I, Salpea P et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843
Article
PubMed
Google Scholar
Filippatos T, Tsimihodimos V, Pappa E, Elisaf M (2017) Pathophysiology of Diabetic Dyslipidaemia. Curr Vasc Pharmacol 15(6):886–899. https://doi.org/10.2174/1570161115666170201105425
CAS
Article
Google Scholar
Mora S, Otvos JD, Rosenson RS, Pradhan A, Buring JE, Ridker PM (2010) Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes 59(5):1153–1160. https://doi.org/10.2337/db09-1114
CAS
Article
PubMed
PubMed Central
Google Scholar
Tabara Y, Arai H, Hirao Y et al (2017) Different inverse association of large high-density lipoprotein subclasses with exacerbation of insulin resistance and incidence of type 2 diabetes: The Nagahama study. Diabetes Res Clin Pract 127:123–131. https://doi.org/10.1016/j.diabres.2017.03.018
CAS
Article
PubMed
Google Scholar
Koo SH, Dutcher AK, Towle HC (2001) Glucose and insulin function through two distinct transcription factors to stimulate expression of lipogenic enzyme genes in liver. JBiolChem 276(12):9437–9445
CAS
Google Scholar
Rashid S, Watanabe T, Sakaue T, Lewis GF (2003) Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: The combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. Clin Biochem 36:421–429. https://doi.org/10.1016/S0009-9120(03)00078-X
CAS
Article
PubMed
Google Scholar
Thuahnai ST, Lund-Katz S, Dhanasekaran P et al (2004) Scavenger receptor class B type I-mediated cholesteryl ester-selective uptake and efflux of unesterified cholesterol: Influence of high density lipoprotein size and structure. J Biol Chem 279(13):12448–12455. https://doi.org/10.1074/jbc.M311718200
CAS
Article
PubMed
Google Scholar
Sparks DL, Davidson WS, Lund-Katz S, Phillips MC (1995) Effects of the neutral lipid content of high density lipoprotein on apolipoprotein A-I structure and particle stability. J Biol Chem 270(45):26910–26917. https://doi.org/10.1074/jbc.270.45.26910
CAS
Article
PubMed
Google Scholar
Zhang P, Gao J, Pu C, Zhang Y (2017) Apolipoprotein status in type 2 diabetes mellitus and its complications (Review). Mol Med Rep 16:9279–9286. https://doi.org/10.3892/mmr.2017.7831
CAS
Article
PubMed
Google Scholar
Kheniser KG, Osme A, Kim C, Ilchenko S, Kasumov T, Kashyap SR (2020) Temporal Dynamics of High-Density Lipoprotein Proteome in Diet-Controlled Subjects with Type 2 Diabetes. Biomolecules 10(4):520. https://doi.org/10.3390/biom10040520
CAS
Article
PubMed Central
Google Scholar
Morgantini C, Meriwether D, Baldi S et al (2014) HDL lipid composition is profoundly altered in patients with type 2 diabetes and atherosclerotic vascular disease. Nutr Metab Cardiovasc Dis 24(6):594–599. https://doi.org/10.1016/j.numecd.2013.12.011
CAS
Article
PubMed
PubMed Central
Google Scholar
Mastorikou M, Mackness B, Liu Y, Mackness M (2008) Glycation of paraoxonase-1 inhibits its activity and impairs the ability of high-density lipoprotein to metabolize membrane lipid hydroperoxides. Diabet Med 25(9):1049–1055. https://doi.org/10.1111/j.1464-5491.2008.02546.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Kotur-Stevuljević J, Vekić J, Stefanović A et al (2020) Paraoxonase 1 and atherosclerosis-related diseases. BioFactors 46:193–205. https://doi.org/10.1002/biof.1549
CAS
Article
PubMed
Google Scholar
Perségol L, Vergès B, Foissac M, Gambert P, Duvillard L (2006) Inability of HDL from type 2 diabetic patients to counteract the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia 49(6):1380–1386. https://doi.org/10.1007/s00125-006-0244-1
CAS
Article
PubMed
Google Scholar
Lemmers RFH, van Hoek M, Lieverse AG, Verhoeven AJM, Sijbrands EJG, Mulder MT (2017) The anti-inflammatory function of high-density lipoprotein in type II diabetes: A systematic review. J Clin Lipidol 11(3):712–724.e5. https://doi.org/10.1016/j.jacl.2017.03.013
Article
PubMed
Google Scholar
Srivastava RAK (2018) Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol Cell Biochem 440:167–187. https://doi.org/10.1007/s11010-017-3165-z
CAS
Article
PubMed
Google Scholar
Estruch M, Miñambres I, Sanchez-Quesada JL et al (2017) Increased inflammatory effect of electronegative LDL and decreased protection by HDL in type 2 diabetic patients. Atherosclerosis 265:292–298. https://doi.org/10.1016/j.atherosclerosis.2017.07.015
CAS
Article
PubMed
Google Scholar
Shao B, Tang C, Heinecke JW, Oram JF (2010) Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export. J Lipid Res 51(7):1849–1858. https://doi.org/10.1194/jlr.M004085
CAS
Article
PubMed
PubMed Central
Google Scholar
Tsujita M, Hossain MA, Lu R, Tsuboi T, Okumura-Noji K, Yokoyama S (2017) Exposure to high glucose concentration decreases cell surface abca1 and hdl biogenesis in hepatocytes. J Atheroscler Thromb 24(11):1132–1149. https://doi.org/10.5551/jat.39156
CAS
Article
PubMed
PubMed Central
Google Scholar
Drew BG, Rye KA, Duffy SJ, Barter P, Kingwell BA (2012) The emerging role of HDL in glucose metabolism. NatRevEndocrinol 8(4):237–245
CAS
Google Scholar
Liu J, van Klinken JB, Semiz S et al (2017) A Mendelian Randomization Study of Metabolite Profiles, Fasting Glucose, and Type 2 Diabetes. Diabetes 66(11):2915–2926. https://doi.org/10.2337/db17-0199
CAS
Article
PubMed
Google Scholar
Rye K-A, Barter PJ, Cochran BJ (2016) Apolipoprotein A-I interactions with insulin secretion and production. Curr Opin Lipidol 27(1):8–13. https://doi.org/10.1097/MOL.0000000000000253
CAS
Article
PubMed
Google Scholar
Calkin AC, Drew BG, Ono A et al (2009) Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. Circulation 120(21):2095–2104. https://doi.org/10.1161/CIRCULATIONAHA.109.870709
CAS
Article
PubMed
Google Scholar
Kruit JK, Brunham LR, Verchere CB, Hayden MR (2010) HDL and LDL cholesterol significantly influence beta-cell function in type 2 diabetes mellitus. Curr Opin Lipidol 21(3):178–185
Kruit JK, Kremer PHC, Dai L et al (2010) Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the LDL receptor influences cholesterol-induced impairment of beta cell function in mice. Diabetologia 53(6):1110–1119. https://doi.org/10.1007/s00125-010-1691-2
CAS
Article
PubMed
Google Scholar
Fryirs MA, Barter PJ, Appavoo M et al (2010) Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arter 30(8):1642–1648
CAS
Google Scholar
Von EA, Widmann C (2014) High-density lipoprotein, beta cells, and diabetes. Cardiovasc 103(3):384–394
Article
Google Scholar
Domingo-Espín J, Lindahl M, Nilsson-Wolanin O, Cushman SW, Stenkula KG, Lagerstedt JO (2016) Dual actions of apolipoprotein A-I on glucose-stimulated insulin secretion and insulin-independent peripheral tissue glucose uptake lead to increased heart and skeletal muscle glucose disposal. Diabetes 65(7):1838–1848. https://doi.org/10.2337/db15-1493
CAS
Article
PubMed
Google Scholar
Matsumura K, Tamasawa N, Daimon M (2018) Possible insulinotropic action of apolipoprotein A-I through the ABCA1/Cdc42/cAMP/PKA pathway in MIN6 cells. Front Endocrinol (Lausanne) 9(OCT):645. https://doi.org/10.3389/fendo.2018.00645
Article
Google Scholar
Wang F, Kohan AB, Kindel TL et al (2012) Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proc Natl Acad Sci U S A 109(24):9641–9646. https://doi.org/10.1073/pnas.1201433109
Article
PubMed
PubMed Central
Google Scholar
Dalla-Riva J, Stenkula KG, Petrlova J, Lagerstedt JO (2013) Discoidal HDL and apoA-I-derived peptides improve glucose uptake in skeletal muscle. J Lipid Res 54(5):1275–1282
CAS
Article
Google Scholar
Song P, Kwon Y, Yea K et al (2015) Apolipoprotein a1 increases mitochondrial biogenesis through AMP-activated protein kinase. Cell Signal 27(9):1873–1881. https://doi.org/10.1016/j.cellsig.2015.05.003
CAS
Article
PubMed
Google Scholar
Stenkula KG, Lindahl M, Petrlova J et al (2014) Single injections of apoA-I acutely improve in vivo glucose tolerance in insulin-resistant mice. Diabetol 57(4):797–800. https://doi.org/10.1007/s00125-014-3162-7
CAS
Article
Google Scholar
Manandhar B, Cochran BJ, Rye KA (2020) Role of High-Density Lipoproteins in Cholesterol Homeostasis and Glycemic Control. J Am Heart Assoc 9(1):e013531. https://doi.org/10.1161/JAHA.119.013531
CAS
Article
PubMed
Google Scholar
Tang S, Tabet F, Cochran BJ et al (2019) Apolipoprotein A-I enhances insulin-dependent and insulin-independent glucose uptake by skeletal muscle. Sci Rep 9(1):1350. https://doi.org/10.1038/s41598-018-38014-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Fritzen AM, Domingo-Espín J, Lundsgaard AM et al (2020) ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2. Mol Metab 35:100949. https://doi.org/10.1016/j.molmet.2020.01.013
CAS
Article
PubMed
PubMed Central
Google Scholar
de Luis D, Izaola O, Primo D, Aller R (2019) Role of rs670 variant of APOA1 gene on metabolic response after a high fat vs. a low fat hypocaloric diets in obese human subjects. J Diabetes Complicat 33(3):249–254. https://doi.org/10.1016/j.jdiacomp.2018.10.015
Article
Google Scholar
Edmunds SJ, Liébana-García R, Nilsson O et al (2019) ApoAI-derived peptide increases glucose tolerance and prevents formation of atherosclerosis in mice. Diabetologia 62(7):1257–1267. https://doi.org/10.1007/s00125-019-4877-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Ochoa-Guzmán A, Moreno-Macías H, Guillén-Quintero D et al (2020) R230C but not − 565C/T variant of the ABCA1 gene is associated with type 2 diabetes in Mexicans through an effect on lowering HDL-cholesterol levels. J Endocrinol Investig 43(8):1061–1071. https://doi.org/10.1007/s40618-020-01187-8
CAS
Article
Google Scholar
Gamboa-Meléndez MA, Galindo-Gómez C, Juárez-Martínez L et al (2015) Novel Association of the R230C Variant of the ABCA1 Gene with High Triglyceride Levels and Low High-density Lipoprotein Cholesterol Levels in Mexican School-age Children with High Prevalence of Obesity. Arch Med Res 46(6):495–501. https://doi.org/10.1016/j.arcmed.2015.07.008
CAS
Article
PubMed
Google Scholar
de HW, Karasinska JM, Ruddle P, Hayden MR (2014) Hepatic ABCA1 expression improves beta-cell function and glucose tolerance. Diabetes 63(12):4076–4082
Article
Google Scholar
Brunham LR, Kruit JK, Pape TD et al (2007) Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat Med 13(3):340–347
Kruit JK, Wijesekara N, Fox JE et al (2011) Islet cholesterol accumulation due to loss of ABCA1 leads to impaired exocytosis of insulin granules. Diabetes 60(12):3186–3196. https://doi.org/10.2337/db11-0081
CAS
Article
PubMed
PubMed Central
Google Scholar
Kruit JK, Wijesekara N, Westwell-Roper C et al (2012) Loss of both ABCA1 and ABCG1 results in increased disturbances in islet sterol homeostasis, inflammation, and impaired beta-cell function. Diabetes 61(3):659–664. https://doi.org/10.2337/db11-1341
CAS
Article
PubMed
PubMed Central
Google Scholar
Wijesekara N, Zhang LH, Kang MH et al (2012) miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 61(3):653–658. https://doi.org/10.2337/db11-0944
CAS
Article
PubMed
PubMed Central
Google Scholar
Rickels MR, Goeser ES, Fuller C et al (2015) Loss-of-function mutations in ABCA1 and enhanced β-cell secretory capacity in young adults. Diabetes 64(1):193–199. https://doi.org/10.2337/db14-0436
CAS
Article
PubMed
Google Scholar
Xepapadaki E, Maulucci G, Constantinou C et al (2019) Impact of apolipoprotein A1- or lecithin:cholesterol acyltransferase-deficiency on white adipose tissue metabolic activity and glucose homeostasis in mice. Biochim Biophys Acta - Mol Basis Dis 1865(6):1351–1360. https://doi.org/10.1016/j.bbadis.2019.02.003
CAS
Article
PubMed
Google Scholar
Gleason MM, Medow MS, Tulenko TN (1991) Excess membrane cholesterol alters calcium movements, cytosolic calcium levels, and membrane fluidity in arterial smooth muscle cells. Circ Res 69(1):216–227. https://doi.org/10.1161/01.RES.69.1.216
CAS
Article
PubMed
Google Scholar