Altered cellular localisation and expression, together with unconventional protein trafficking, of prion protein, PrPC, in type 1 diabetes

Abstract

Aims/hypothesis

Normal cellular prion protein (PrPC) is a conserved mammalian glycoprotein found on the outer plasma membrane leaflet through a glycophosphatidylinositol anchor. Although PrPC is expressed by a wide range of tissues throughout the body, the complete repertoire of its functions has not been fully determined. The misfolded pathogenic isoform PrPSc (the scrapie form of PrP) is a causative agent of neurodegenerative prion diseases. The aim of this study is to evaluate PrPC localisation, expression and trafficking in pancreases from organ donors with and without type 1 diabetes and to infer PrPC function through studies on interacting protein partners.

Methods

In order to evaluate localisation and trafficking of PrPC in the human pancreas, 12 non-diabetic, 12 type 1 diabetic and 12 autoantibody-positive organ donor tissue samples were analysed using immunofluorescence analysis. Furthermore, total RNA was isolated from 29 non-diabetic, 29 type 1 diabetic and 24 autoantibody-positive donors to estimate PrPC expression in the human pancreas. Additionally, we performed PrPC-specific immunoblot analysis on total pancreatic protein from non-diabetic and type 1 diabetic organ donors to test whether changes in PrPC mRNA levels leads to a concomitant increase in PrPC protein levels in human pancreases.

Results

In non-diabetic and type 1 diabetic pancreases (the latter displaying both insulin-positive [INS(+)] and -negative [INS(−)] islets), we found PrPC in islets co-registering with beta cells in all INS(+) islets and, strikingly, unexpected activation of PrPC in alpha cells within diabetic INS(−) islets. We found PrPC localised to the plasma membrane and endoplasmic reticulum (ER) but not the Golgi, defining two cellular pools and an unconventional protein trafficking mechanism bypassing the Golgi. We demonstrate PrPC co-registration with established protein partners, neural cell adhesion molecule 1 (NCAM1) and stress-inducible phosphoprotein 1 (STI1; encoded by STIP1) on the plasma membrane and ER, respectively, linking PrPC function with cyto-protection, signalling, differentiation and morphogenesis. We demonstrate that both PRNP (encoding PrPC) and STIP1 gene expression are dramatically altered in type 1 diabetic and autoantibody-positive pancreases.

Conclusions/interpretation

As the first study to address PrPC expression in non-diabetic and type 1 diabetic human pancreas, we provide new insights for PrPC in the pathogenesis of type 1 diabetes. We evaluated the cell-type specific expression of PrPC in the human pancreas and discovered possible connections with potential interacting proteins that we speculate might address mechanisms relevant to the role of PrPC in the human pancreas.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

Application for datasets generated during and/or analysed during the current study may be considered by the corresponding author on reasonable request.

Abbreviations

AAb+:

Autoantibody-positive

ER:

Endoplasmic reticulum

GM130:

Golgin A2

GPI:

Glycosyl-phosphatidylinositol

HSP:

Heat-shock protein

INS(+):

Insulin-positive

INS(−):

Insulin-negative

MIQE:

Minimum Information for Publication of Quantitative Real-Time PCR Experiments

NCAM1:

Neural cell adhesion molecule 1

PrPC :

Cellular prion protein

PrPSc :

Scrapie form of prion protein (pathogenic, alternatively folded aggregate)

qRT-PCR:

Quantitative RT-PCR

STI1:

Stress-inducible phosphoprotein 1

UNOS:

United Network for Organ Sharing

WFS1:

Wolfram syndrome 1

References

  1. 1.

    Prusiner SB (1998) The prion diseases. Brain Pathol 8(3):499–513

    Article  CAS  Google Scholar 

  2. 2.

    Wulf MA, Senatore A, Aguzzi A (2017) The biological function of the cellular prion protein: an update. BMC Biol 15(1):34. https://doi.org/10.1186/s12915-017-0375-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. 3.

    Atkinson CJ, Zhang K, Munn AL, Wiegmans A, Wei MQ (2016) Prion protein scrapie and the normal cellular prion protein. Prion 10(1):63–82. https://doi.org/10.1080/19336896.2015.1110293

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Kovacs GG, Budka H (2008) Prion diseases: from protein to cell pathology. Am J Pathol 172(3):555–565. https://doi.org/10.2353/ajpath.2008.070442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. 5.

    Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144. https://doi.org/10.1126/science.6801762

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Otero A, Duque Velasquez C, Johnson C et al (2019) Prion protein polymorphisms associated with reduced CWD susceptibility limit peripheral PrP(CWD) deposition in orally infected white-tailed deer. BMC Vet Res 15(1):50. https://doi.org/10.1186/s12917-019-1794-z

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ryskalin L, Busceti CL, Biagioni F et al (2019) Prion protein in glioblastoma multiforme. Int J Mol Sci 20(20). https://doi.org/10.3390/ijms20205107

  8. 8.

    Castle AR, Gill AC (2017) Physiological functions of the cellular prion protein. Front Mol Biosci 4:19. https://doi.org/10.3389/fmolb.2017.00019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Tee BL, Longoria Ibarrola EM, Geschwind MD (2018) Prion diseases. Neurol Clin 36(4):865–897. https://doi.org/10.1016/j.ncl.2018.07.005

    Article  PubMed  Google Scholar 

  10. 10.

    Asher DM, Gregori L (2018) Human transmissible spongiform encephalopathies: historic view. Handb Clin Neurol 153:1–17. https://doi.org/10.1016/B978-0-444-63945-5.00001-5

    Article  PubMed  Google Scholar 

  11. 11.

    Kovacs GG, Budka H (2009) Molecular pathology of human prion diseases. Int J Mol Sci 10(3):976–999. https://doi.org/10.3390/ijms10030976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Corbett GT, Wang Z, Hong W et al (2020) PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathol 139(3):503–526. https://doi.org/10.1007/s00401-019-02114-9

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Westergard L, Christensen HM, Harris DA (2007) The cellular prion protein (PrP(C)): its physiological function and role in disease. Biochim Biophys Acta 1772(6):629–644. https://doi.org/10.1016/j.bbadis.2007.02.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Atouf F, Scharfmann R, Lasmezas C, Czernichow P (1994) Tight hormonal control of PrP gene expression in endocrine pancreatic cells. Biochem Biophys Res Commun 201(3):1220–1226. https://doi.org/10.1006/bbrc.1994.1835

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Ashok A, Singh N (2018) Prion protein modulates glucose homeostasis by altering intracellular iron. Sci Rep 8(1):6556. https://doi.org/10.1038/s41598-018-24786-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Strom A, Wang GS, Reimer R, Finegood DT, Scott FW (2007) Pronounced cytosolic aggregation of cellular prion protein in pancreatic beta-cells in response to hyperglycemia. Lab Investig 87(2):139–149. https://doi.org/10.1038/labinvest.3700500

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Strom A, Wang GS, Scott FW (2011) Impaired glucose tolerance in mice lacking cellular prion protein. Pancreas 40(2):229–232. https://doi.org/10.1097/mpa.0b013e3181f7e547

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Amselgruber WM, Buttner M, Schlegel T, Schweiger M, Pfaff E (2006) The normal cellular prion protein (PrPc) is strongly expressed in bovine endocrine pancreas. Histochem Cell Biol 125(4):441–448. https://doi.org/10.1007/s00418-005-0089-6

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    de Brito G, Lupinacci FC, Beraldo FH et al (2017) Loss of prion protein is associated with the development of insulin resistance and obesity. Biochem J 474(17):2981–2991. https://doi.org/10.1042/BCJ20170137

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Zhu C, Schwarz P, Abakumova I, Aguzzi A (2015) Unaltered prion pathogenesis in a mouse model of high-fat diet-induced insulin resistance. PLoS One 10(12):e0144983. https://doi.org/10.1371/journal.pone.0144983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Eberhard D (2013) Neuron and beta-cell evolution: learning about neurons is learning about beta-cells. Bioessays 35(7):584. https://doi.org/10.1002/bies.201300035

    Article  PubMed  Google Scholar 

  22. 22.

    Visner GA, Dougall WC, Wilson JM, Burr IA, Nick HS (1990) Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response. J Biol Chem 265(5):2856–2864. https://doi.org/10.1016/S0021-9258(19)39880-1

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Torres M, Cartier L, Matamala JM, Hernandez N, Woehlbier U, Hetz C (2012) Altered prion protein expression pattern in CSF as a biomarker for Creutzfeldt-Jakob disease. PLoS One 7(4):e36159. https://doi.org/10.1371/journal.pone.0036159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Lewis V, Hooper NM (2011) The role of lipid rafts in prion protein biology. Front Biosci (Landmark Ed) 16:151–168. https://doi.org/10.2741/3681

    Article  CAS  Google Scholar 

  26. 26.

    Takeda K, Inoue H, Tanizawa Y et al (2001) WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet 10(5):477–484. https://doi.org/10.1093/hmg/10.5.477

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Puthenveedu MA, Bachert C, Puri S, Lanni F, Linstedt AD (2006) GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat Cell Biol 8(3):238–248. https://doi.org/10.1038/ncb1366

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Dworzak MN, Fritsch G, Buchinger P et al (1994) Flow cytometric assessment of human MIC2 expression in bone marrow, thymus, and peripheral blood. Blood 83(2):415–425. https://doi.org/10.1182/blood.V83.2.415.415

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Grieve AG, Rabouille C (2011) Golgi bypass: skirting around the heart of classical secretion. Cold Spring Harb Perspect Biol 3(4):a005298. https://doi.org/10.1101/cshperspect.a005298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Gee HY, Noh SH, Tang BL, Kim KH, Lee MG (2011) Rescue of DeltaF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell 146(5):746–760. https://doi.org/10.1016/j.cell.2011.07.021

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Beery ML, Jacobsen LM, Atkinson MA, Butler AE, Campbell-Thompson M (2019) Islet amyloidosis in a child with type 1 diabetes. Islets 11(2):44–49. https://doi.org/10.1080/19382014.2019.1599707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Couce M, O'Brien TD, Moran A, Roche PC, Butler PC (1996) Diabetes mellitus in cystic fibrosis is characterized by islet amyloidosis. J Clin Endocrinol Metab 81(3):1267–1272. https://doi.org/10.1210/jcem.81.3.8772610

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Maloy AL, Longnecker DS, Greenberg ER (1981) The relation of islet amyloid to the clinical type of diabetes. Hum Pathol 12(10):917–922. https://doi.org/10.1016/s0046-8177(81)80197-9

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Mukherjee A, Morales-Scheihing D, Butler PC, Soto C (2015) Type 2 diabetes as a protein misfolding disease. Trends Mol Med 21(7):439–449. https://doi.org/10.1016/j.molmed.2015.04.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Mukherjee A, Soto C (2017) Prion-like protein aggregates and type 2 diabetes. Cold Spring Harb Perspect Med 7(5):a024315. https://doi.org/10.1101/cshperspect.a024315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Gupta D, Leahy JL (2014) Islet amyloid and type 2 diabetes: overproduction or inadequate clearance and detoxification? J Clin Invest 124(8):3292–3294. https://doi.org/10.1172/JCI77506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. 37.

    Yakupova EI, Bobyleva LG, Vikhlyantsev IM, Bobylev AG (2019) Congo Red and amyloids: history and relationship. Biosci Rep 39(1):BSR20181415. https://doi.org/10.1042/BSR20181415

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Xue C, Lin TY, Chang D, Guo Z (2017) Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R Soc Open Sci 4(1):160696. https://doi.org/10.1098/rsos.160696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    da Fonseca ACC, Matias D, Geraldo LHM et al (2020) The multiple functions of the co-chaperone stress inducible protein 1. Cytokine Growth Factor Rev. https://doi.org/10.1016/j.cytogfr.2020.06.003

  40. 40.

    Schmitt-Ulms G, Legname G, Baldwin MA et al (2001) Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 314(5):1209–1225. https://doi.org/10.1006/jmbi.2000.5183

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Hernandez MP, Sullivan WP, Toft DO (2002) The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J Biol Chem 277(41):38294–38304. https://doi.org/10.1074/jbc.M206566200

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Sytnyk V, Leshchyns'ka I, Schachner M (2017) Neural cell adhesion molecules of the immunoglobulin superfamily regulate synapse formation, maintenance, and function. Trends Neurosci 40(5):295–308. https://doi.org/10.1016/j.tins.2017.03.003

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Zanata SM, Lopes MH, Mercadante AF et al (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 21(13):3307–3316. https://doi.org/10.1093/emboj/cdf325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. 44.

    Lopes MH, Hajj GN, Muras AG et al (2005) Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J Neurosci 25(49):11330–11339. https://doi.org/10.1523/JNEUROSCI.2313-05.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. 45.

    Mehrabian M, Brethour D, Wang H, Xi Z, Rogaeva E, Schmitt-Ulms G (2015) The prion protein controls polysialylation of neural cell adhesion molecule 1 during cellular morphogenesis. PLoS One 10(8):e0133741. https://doi.org/10.1371/journal.pone.0133741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. 46.

    Chakravarthy H, Gu X, Enge M et al (2017) Converting adult pancreatic islet alpha cells into beta cells by targeting both Dnmt1 and Arx. Cell Metab 25(3):622–634. https://doi.org/10.1016/j.cmet.2017.01.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Miranda A, Ramos-Ibeas P, Pericuesta E, Ramirez MA, Gutierrez-Adan A (2013) The role of prion protein in stem cell regulation. Reproduction 146(3):R91–R99. https://doi.org/10.1530/REP-13-0100

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Steele AD, Emsley JG, Ozdinler PH, Lindquist S, Macklis JD (2006) Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci U S A 103(9):3416–3421. https://doi.org/10.1073/pnas.0511290103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. 49.

    Viotti C (2016) ER to Golgi-dependent protein secretion: the conventional pathway. Methods Mol Biol 1459:3–29. https://doi.org/10.1007/978-1-4939-3804-9_1

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Maeda Y, Kinoshita T (2011) Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res 50(4):411–424. https://doi.org/10.1016/j.plipres.2011.05.002

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Rabouille C (2017) Pathways of unconventional protein secretion. Trends Cell Biol 27(3):230–240. https://doi.org/10.1016/j.tcb.2016.11.007

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Ostapchenko VG, Beraldo FH, Mohammad AH et al (2013) The prion protein ligand, stress-inducible phosphoprotein 1, regulates amyloid-beta oligomer toxicity. J Neurosci 33(42):16552–16564. https://doi.org/10.1523/JNEUROSCI.3214-13.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. 53.

    Beraldo FH, Ostapchenko VG, Xu JZ et al (2018) Mechanisms of neuroprotection against ischemic insult by stress-inducible phosphoprotein-1/prion protein complex. J Neurochem 145(1):68–79. https://doi.org/10.1111/jnc.14281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. 54.

    Roucou X, Giannopoulos PN, Zhang Y, Jodoin J, Goodyer CG, LeBlanc A (2005) Cellular prion protein inhibits proapoptotic Bax conformational change in human neurons and in breast carcinoma MCF-7 cells. Cell Death Differ 12(7):783–795. https://doi.org/10.1038/sj.cdd.4401629

    Article  PubMed  CAS  Google Scholar 

  55. 55.

    Gill AC, Castle AR (2018) The cellular and pathologic prion protein. Handb Clin Neurol 153:21–44. https://doi.org/10.1016/B978-0-444-63945-5.00002-7

    Article  PubMed  Google Scholar 

  56. 56.

    White SA, Zhang LS, Pasula DJ, Yang YHC, Luciani DS (2020) Bax and Bak jointly control survival and dampen the early unfolded protein response in pancreatic beta-cells under glucolipotoxic stress. Sci Rep 10(1):10986. https://doi.org/10.1038/s41598-020-67755-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. 57.

    Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169(2):341–354. https://doi.org/10.1083/jcb.200409127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. 58.

    Mehrabian M, Hildebrandt H, Schmitt-Ulms G (2016) NCAM1 polysialylation: the prion protein’s elusive reason for being? ASN Neuro 8(6):1759091416679074. https://doi.org/10.1177/1759091416679074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. 59.

    Linden R (2017) The biological function of the prion protein: a cell surface scaffold of signaling modules. Front Mol Neurosci 10:77. https://doi.org/10.3389/fnmol.2017.00077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the organ donors and their families for their precious contributions to nPOD for research, without which this work would not be possible. Organ Procurement Organizations (OPO) partnering with nPOD to provide research resources are listed at http://www.jdrfnpod.org//for-partners/npod-partners/.

Authors’ relationships and activities

The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Funding

Research reported in this publication was supported by the network for Pancreatic Organ donors with Diabetes (nPOD; RRID-SCR_014541), a collaborative type 1 diabetes research project sponsored by JDRF (nPOD:5-SRA-2018-557-Q-R) and The Leona M. & Harry B. Helmsley Charitable Trust (grant no. 2018PG-T1D053), as well as NIH grant 1UC4DK108132-01, principal investigator MAA. In addition, the Organ Procurement Organizations (OPO) partnering with nPOD to provide research resources are listed at http://www.jdrfnpod.org//for-partners/npod-partners/.

Author information

Affiliations

Authors

Contributions

The study was conceived and designed by HH, DEB, IK, MAA, HSN and CHW. HH, DEB, CY and ECJ provided design, data acquisition and interpretation of data. All authors contributed to the interpretation of the data and critical revision of the manuscript. HH, HSN and CHW drafted the manuscript. All authors read and approved the final manuscript. As guarantor of this work, CHW had full access to all of the data and takes full responsibility for the integrity of the data and accuracy of its analysis.

Corresponding author

Correspondence to Clive H. Wasserfall.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1319 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hiller, H., Yang, C., Beachy, D.E. et al. Altered cellular localisation and expression, together with unconventional protein trafficking, of prion protein, PrPC, in type 1 diabetes. Diabetologia (2021). https://doi.org/10.1007/s00125-021-05501-8

Download citation

Keywords

  • Cellular prion protein
  • Protein trafficking
  • Stress-induced phosphoprotein 1
  • Type 1 diabetes
  • Type 1 diabetes-dependent endocrine cell expression