Oestrogen receptor α in T cells controls the T cell immune profile and glucose metabolism in mouse models of gestational diabetes mellitus



The imbalance between maternal insulin resistance and a relative lack of insulin secretion underlies the pathogenesis of gestational diabetes mellitus (GDM). Alterations in T cell subtypes and increased levels of circulating proinflammatory cytokines have been proposed as potential mechanisms underlying the pathophysiology of insulin resistance in GDM. Since oestrogen modulates T cell immunity, we hypothesised that oestrogen plays a homeostatic role in visceral adipose tissue by coordinating T cell immunity through oestrogen receptor α (ERα) in T cells to prevent GDM.


Female CD4-cre ERαfl/fl (KO) mice on a C57BL/6 background with ERα ablation specifically in T cells, and ERαfl/fl (ERα-floxed [FL]) mice were fed 60 kJ% high-fat diet (HFD) for 4 weeks. Female mice mated with male BALB/c mice to achieve allogenic pregnancy and were maintained on an HFD to generate the GDM model. Mice were divided into four experimental groups: non-pregnant FL, non-pregnant KO, pregnant FL (FL-GDM) and pregnant KO (KO-GDM). GTTs and ITTs were performed on day 12.5 or 13.5 and 16.5 after breeding, respectively. On day 18.5 after breeding, mice were killed and T cell subsets in the gonadal white adipose tissue (gWAT) and spleen were analysed using flow cytometry. Histological examination was also conducted and proinflammatory gene expression in gWAT and the liver was evaluated.


KO mice that mated with BALB/c mice showed normal fertility rates and fetal weights as compared with FL mice. Body and tissue weights were similar between FL and KO mice. When compared with FL-GDM mice, KO-GDM mice showed decreased insulin secretion (serum insulin concentration 15 min after glucose loading: 137.3 ± 18.3 pmol/l and 40.1 ± 36.5 pmol/l, respectively; p < 0.05), impaired glucose tolerance (glucose AUC in GTT: 2308.3 ± 54.0 mmol/l × min and 2620.9 ± 122.1 mmol/l × min, respectively; p < 0.05) and increased numbers of T helper (Th)17 cells in gWAT (0.4 ± 0.0% vs 0.8 ± 0.1%; p < 0.05). However, the contents of Th1 and regulatory T cells (Tregs) in gWAT remained similar between FL-GDM and KO-GDM. Glucose-stimulated insulin secretion was similar between isolated islets derived from FL and KO mice, but was reduced by IL-17A treatment. Moreover, the levels of proinflammatory gene expression, including expression of Emr1 and Tnfa in gWAT, were significantly higher in KO-GDM mice than in FL-GDM mice (5.1-fold and 2.7-fold, respectively; p < 0.01 for both). Furthermore, KO-GDM mice showed increased expression of genes encoding hepatokines, Ahsg and Fgf21 (both were 2.4-fold higher vs FL-GDM mice; p < 0.05 and p = 0.09, respectively), with no changes in inflammatory gene expression (e.g., Tnfa and Ifng) in the liver compared with FL-GDM mice.


Deletion of ERα in T cells caused impaired maternal adaptation of insulin secretion, changes in hepatokine profiles, and enhanced chronic inflammation in gWAT alongside an abnormal increase in Th17 cells. These results suggest that the ERα-mediated oestrogen signalling effects in T cells regulate T cell immunity and contribute to glucose homeostasis in pregnancy.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Data presented in this manuscript are available upon request from the corresponding authors.



7-amino-actinomycin D


Brilliant Violet 421




Oestrogen receptor α


Forkhead box P 3


ERα-floxed (mice)


Pregnant ERαfl/fl (mice)


Gestational diabetes mellitus


Gonadal white adipose tissue


High-fat diet


CD4-cre ERαfl/fl (mice)


Pregnant CD4-cre ERαfl/fl (mice)


Natural killer


Nonparenchymal cells




Stromal-vascular fraction


T helper


Regulatory T cell


  1. 1.

    Rayanagoudar G, Hashi AA, Zamora J, Khan KS, Hitman GA, Thangaratinam S (2016) Quantification of the type 2 diabetes risk in women with gestational diabetes: a systematic review and meta-analysis of 95,750 women. Diabetologia 59(7):1403–1411. https://doi.org/10.1007/s00125-016-3927-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    International Diabetes Federation (ed) (2017) IDF diabetes atlas 8th ed. International Diabetes Federation, Brussels, Belgium

    Google Scholar 

  3. 3.

    Shirazian N, Emdadi R, Mahboubi M et al (2009) Screening for gestational diabetes: usefulness of clinical risk factors. Arch Gynecol Obstet 280(6):933–937. https://doi.org/10.1007/s00404-009-1027-y

    Article  PubMed  Google Scholar 

  4. 4.

    Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH (2018) The pathophysiology of gestational diabetes mellitus. Int J Mol Sci 19(11):3342. https://doi.org/10.3390/ijms19113342

    CAS  Article  PubMed Central  Google Scholar 

  5. 5.

    Fasshauer M, Blüher M, Stumvoll M (2013) Adipokines in gestational diabetes. Lancet Diabetes Endocrinol 2(6):488–499. https://doi.org/10.1016/S2213-8587(13)70176-1

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Ategbo JM, Grissa O, Yessoufou A et al (2006) Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J Clin Endocrinol Metab 91(10):4137–4143. https://doi.org/10.1210/jc.2006-0980

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Sheu A, Chan Y, Ferguson A et al (2018) A proinflammatory CD4+ T cell phenotype in gestational diabetes mellitus. Diabetologia 61(7):1633–1643. https://doi.org/10.1007/s00125-018-4615-1

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Schober L, Radnai D, Spratte J et al (2014) The role of regulatory T cell (Treg) subsets in gestational diabetes mellitus. Clin Exp Immunol 177(1):76–85. https://doi.org/10.1111/cei.12300

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Wang X, Wu SP, DeMayo FJ (2017) Hormone dependent uterine epithelial-stromal communication for pregnancy support. Placenta 60(Suppl 1):S20–S26. https://doi.org/10.1016/j.placenta.2017.07.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Samstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY (2012) Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150(1):29–38. https://doi.org/10.1016/j.cell.2012.05.031

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Haghmorad D, Amini AA, Mahmoudi MB, Rastin M, Hosseini M, Mahmoudi M (2014) Pregnancy level of estrogen attenuates experimental autoimmune encephalomyelitis in both ovariectomized and pregnant C57BL/6 mice through expansion of Treg and Th2 cells. J Neuroimmunol 277(1–2):85–95. https://doi.org/10.1016/j.jneuroim.2014.10.004

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Khan D, Ansar AS (2015) The immune system is a natural target for estrogen action: opposing effects of estrogen in two prototypical autoimmune diseases. Front Immunol 6:635. https://doi.org/10.3389/fimmu.2015.00635

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Pernis A (2007) Estrogen and CD4+ T cells. Curr Opin Rheumatol 19:414–420. https://doi.org/10.1097/BOR.0b013e328277ef2a

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Kovats S (2015) Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol 294(2):63–69. https://doi.org/10.1016/j.cellimm.2015.01.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Goldstein JD, Perol L, Zaragoza B, Baeyens A, Marodon G, Piaggio E (2013) Role of cytokines in thymus- versus peripherally derived-regulatory T cell differentiation and function. Front Immunol 4:155. https://doi.org/10.3389/fimmu.2013.00155

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Manrique C, Lastra G, Habibi J, Mugerfeld I, Garro M, Sowers JR (2012) Loss of estrogen receptor α signaling leads to insulin resistance and obesity in young and adult female mice. Cardiorenal Med 2(3):200–210. https://doi.org/10.1159/000339563

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Nagira K, Sasaoka T, Wada T et al (2006) Altered subcellular distribution of estrogen receptor α is implicated in estradiol-induced dual regulation of insulin signaling in 3T3-L1 adipocytes. Endocrinology 147(2):1020–1028. https://doi.org/10.1210/en.2005-0825

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Nadal A, Alonso-Magdalena P, Soriano S, Ropero AB, Quesada I (2009) The role of oestrogens in the adaptation of islets to insulin resistance. J Physiol 587(Pt 21):5031–5037. https://doi.org/10.1113/jphysiol.2009.177188

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Nakamura T, Imai Y, Matsumoto T et al (2007) Estrogen prevents bone loss via estrogen receptor α and induction of Fas ligand in osteoclasts. Cell 130(5):811–823. https://doi.org/10.1016/j.cell.2007.07.025

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Yonezawa R, Wada T, Matsumoto N et al (2012) Central versus peripheral impact of estradiol on the impaired glucose metabolism in ovariectomized mice on a high-fat diet. Am J Physiol Endocrinol Metab 303(4):E445–E456. https://doi.org/10.1152/ajpendo.00638.2011

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Sameshima A, Wada T, Ito T et al (2015) Teneligliptin improves metabolic abnormalities in a mouse model of postmenopausal obesity. J Endocrinol 227(1):25–36. https://doi.org/10.1530/JOE-15-0239

    Article  PubMed  Google Scholar 

  22. 22.

    Ishikawa A, Wada T, Nishimura S et al (2020) Estrogen regulates sex-specific localization of regulatory T cells in adipose tissue of obese female mice. PLoS One 15(4):e0230885. https://doi.org/10.1371/journal.pone.0230885

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Onogi Y, Wada T, Kamiya C et al (2017) PDGFRβ regulates adipose tissue expansion and glucose metabolism via vascular remodeling in diet-induced obesity. Diabetes 66(4):1008–1021. https://doi.org/10.2337/db16-0881

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Wada T, Ishikawa A, Watanabe E et al (2017) Eplerenone prevented obesity-induced inflammasome activation and glucose intolerance. J Endocrinol 235(3):179–191. https://doi.org/10.1530/JOE-17-0351

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Watanabe E, Wada T, Okekawa A et al (2020) Stromal cell-derived factor 1 (SDF1) attenuates platelet-derived growth factor-B (PDGF-B)-induced vascular remodeling for adipose tissue expansion in obesity. Angiogenesis 23(4):667–684. https://doi.org/10.1007/s10456-020-09738-6

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Takahashi M, Miyatsuka T, Suzuki L et al (2020) Biphasic changes in β-cell mass around parturition are accompanied by increased serotonin production. Sci Rep 10(1):4962. https://doi.org/10.1038/s41598-020-61850-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kurashina T, Dezaki K, Yoshida M et al (2015) The β-cell GHSR and downstream cAMP/TRPM2 signaling account for insulinostatic and glycemic effects of ghrelin. Sci Rep 5:14041. https://doi.org/10.1038/srep14041

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Phiel KL, Henderson RA, Adelman SJ, Elloso MM (2005) Differential estrogen receptor gene expression in human peripheral blood mononuclear cell populations. Immunol Lett 97(1):107–113. https://doi.org/10.1016/j.imlet.2004.10.007

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Nishimura S, Manabe I, Nagasaki M et al (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15(8):914–920. https://doi.org/10.1038/nm.1964

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Hull CM, Peakman M, Tree TIM (2017) Regulatory T cell dysfunction in type 1 diabetes: what’s broken and how can we fix it? Diabetologia 60(10):1839–1850. https://doi.org/10.1007/s00125-017-4377-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Brooks-Worrell B, Narla R, Palmer JP (2013) Islet autoimmunity in phenotypic type 2 diabetes patients. Diabetes Obes Metab 15:4. https://doi.org/10.1111/dom.12167

    CAS  Article  Google Scholar 

  32. 32.

    Lu J, Zhang C, Li L, Xue W, Zhang C, Zhang X (2017) Unique features of pancreatic-resident regulatory T cells in autoimmune type 1 diabetes. Front Immunol 8:1235. https://doi.org/10.3389/fimmu.2017.01235

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Choi B, Kim S-H (2018) Regulatory T cells promote pancreatic islet function and viability via TGF-β1 in vitro and in vivo. Korean J Clin Lab Sci 50(3):304–312. https://doi.org/10.15324/kjcls.2018.50.3.304

    Article  Google Scholar 

  34. 34.

    Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787. https://doi.org/10.1016/j.cell.2008.05.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Zhong J, Rao X, Braunstein Z et al (2014) T-cell costimulation protects obesity-induced adipose inflammation and insulin resistance. Diabetes 63(4):1289–1302. https://doi.org/10.2337/db13-1094

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Polanczyk MJ, Hopke C, Huan J, Vandenbark AA, Offner H (2005) Enhanced FoxP3 expression and Treg cell function in pregnant and estrogen-treated mice. J Neuroimmunol 170(1–2):85–92. https://doi.org/10.1016/j.jneuroim.2005.08.023

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Tai P, Wang J, Jin H et al (2008) Induction of regulatory T cells by physiological level estrogen. J Cell Physiol 214(2):456–464. https://doi.org/10.1002/jcp.21221

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Mohammad I, Starskaia I, Nagy T et al (2018) Estrogen receptor α contributes to T cell-mediated autoimmune inflammation by promoting T cell activation and proliferation. Sci Siganl 11(526):eaap9415

    Article  Google Scholar 

  39. 39.

    Shima T, Sasaki Y, Itoh M et al (2010) Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J Reprod Immunol 85(2):121–129. https://doi.org/10.1016/j.jri.2010.02.006

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463(7282):808–812. https://doi.org/10.1038/nature08750

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Gobert M, Lafaille JJ (2012) Maternal-fetal immune tolerance, block by block. Cell 150(1):7–9. https://doi.org/10.1016/j.cell.2012.06.020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Hsu P, Santner-Nanan B, Dahlstrom JE et al (2012) Altered decidual DC-SIGN+ antigen-presenting cells and impaired regulatory T-cell induction in preeclampsia. Am J Pathol 181(6):2149–2160. https://doi.org/10.1016/j.ajpath.2012.08.032

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Polanczyk MJ, Hopke C, Vandenbark AA, Offner H (2007) Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). Int Immunol 19(3):337–343. https://doi.org/10.1093/intimm/dxl151

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Fasching P, Stradner M, Graninger W, Dejaco C, Fessler J (2017) Therapeutic potential of targeting the Th17/Treg axis in autoimmune disorders. Molecules 22(1):134. https://doi.org/10.3390/molecules22010134

    CAS  Article  PubMed Central  Google Scholar 

  45. 45.

    Chen RY, Fan YM, Zhang Q et al (2015) Estradiol inhibits Th17 cell differentiation through inhibition of RORgammaT transcription by recruiting the ERα/REA complex to estrogen response elements of the RORgammaT promoter. J Immunol 194(8):4019–4028. https://doi.org/10.4049/jimmunol.1400806

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Kuzmicki M, Telejko B, Lipinska D et al (2014) The IL-6/IL-6R/sgp130 system and Th17 associated cytokines in patients with gestational diabetes. Endokrynol Pol 65(3):169–175. https://doi.org/10.5603/EP.2014.0023

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Endo Y, Asou HK, Matsugae N et al (2015) Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep 12(6):1042–1055. https://doi.org/10.1016/j.celrep.2015.07.014

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Zhang D, Jin W, Wu R et al (2019) High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation. Immunity 51(4):671–681. https://doi.org/10.1016/j.immuni.2019.08.001

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Lee SH, Jhun J, Byun JK et al (2017) IL-17 axis accelerates the inflammatory progression of obese in mice via TBK1 and IKBKE pathway. Immunol Lett 184:67–75. https://doi.org/10.1016/j.imlet.2017.02.004

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Zuniga LA, Shen WJ, Joyce-Shaikh B et al (2010) IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol 185(11):6947–6959. https://doi.org/10.4049/jimmunol.1001269

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Chung AS, Wu X, Zhuang G et al (2013) An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 19(9):1114–1123. https://doi.org/10.1038/nm.3291

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Zou W, Restifo NP (2010) T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 10(4):248–256. https://doi.org/10.1038/nri2742

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    de la Paz Sanchez-Martinez M, Blanco-Favela F, Mora-Ruiz MD, Chavez-Rueda AK, Bernabe-Garcia M, Chavez-Sanchez L (2017) IL-17-differentiated macrophages secrete pro-inflammatory cytokines in response to oxidized low-density lipoprotein. Lipids Health Dis 16(1):196. https://doi.org/10.1186/s12944-017-0588-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kalabay L, Cseh K, Pajor A et al (2002) Correlation of maternal serum fetuin/α2-HS-glycoprotein concentration with maternal insulin resistance and anthropometric parameters of neonates in normal pregnancy and gestational diabetes. Eur J Endocrinol 147:6. https://doi.org/10.1530/eje.0.1470243

    Article  Google Scholar 

  55. 55.

    Yuan D, Wu BJ, Henry A, Rye KA, Ong KL (2019) Role of fibroblast growth factor 21 in gestational diabetes mellitus: a mini-review. Clin Endocrinol 90(1):47–55. https://doi.org/10.1111/cen.13881

    CAS  Article  Google Scholar 

  56. 56.

    Li SM, Wang WF, Zhou LH et al (2015) Fibroblast growth factor 21 expressions in white blood cells and sera of patients with gestational diabetes mellitus during gestation and postpartum. Endocrine 48(2):519–527. https://doi.org/10.1007/s12020-014-0309-8

    CAS  Article  PubMed  Google Scholar 

Download references


The authors thank: P. Chambon (Institute for Genetics and Cellular and Molecular Biology, University of Strasbourg, Strasbourg, France) and Y. Imai (Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Ehime, Japan) for providing ERα-floxed mice; T. So (Department of Molecular Cell Biology, University of Toyama, Toyama, Japan) and M. Hamaguchi (Department of Endocrinology and Metabolism, Kyoto Prefectural University, Kyoto, Japan) for their technical advice regarding experiments with immunology and flow cytometry; K. Dezaki (Iryo Sosei University, Fukushima, Japan) for the technical advice regarding isolation of pancreatic islet; and T. Matsushima (Department of Pathology, University of Toyama, Toyama, Japan) for technical assistance with immunohistochemistry. Some of the data were presented as abstracts at the 56th EASD Annual Meeting and the 72nd Annual Congress of the Japan Society of Obstetrics and Gynecology in 2020.

Authors’ relationships and activities

The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.


The present study was funded by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP15K09410, JP15K15599, JP18K08469, JP19H05011 and JP19K08997), a Grant for Research Activities of the First Bank of Toyama Scholarship Foundation, and a research grant from Mitsubishi Tanabe Pharma Corporation.

Author information




TT helped design the study, performed experiments, analysed the data and wrote the manuscript; TW conceived and designed the study, performed experiments, analysed the data and wrote the manuscript; KU, SO, HI, and AO performed experiments and analysed the data; AI, TI, and YM performed experiments; AS, YO, MS, and AN analysed and interpreted the data; HT analysed and interpreted the data and edited the manuscript; SS helped design the study and critically reviewed the manuscript; TS supervise the study, analysed and interpretation of data, critically reviewed and edited the manuscript. All the authors have critically contributed to the revision of the article on important intellectual content. All the authors have approved the final version of this manuscript. TW and TS are the guarantors of this work.

Corresponding author

Correspondence to Tsutomu Wada.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(PDF 1404 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanaka, T., Wada, T., Uno, K. et al. Oestrogen receptor α in T cells controls the T cell immune profile and glucose metabolism in mouse models of gestational diabetes mellitus. Diabetologia (2021). https://doi.org/10.1007/s00125-021-05447-x

Download citation


  • Gestational diabetes mellites
  • Hepatokines
  • Insulin secretion
  • Interleukin 17
  • Maternal beta cell adaptation
  • Oestrogen receptor α
  • Pancreatic islet
  • Th17
  • Treg