Maternal food consumption during late pregnancy and offspring risk of islet autoimmunity and type 1 diabetes

Abstract

Aims/hypothesis

We aimed to investigate the association between maternal consumption of gluten-containing foods and other selected foods during late pregnancy and offspring risk of islet autoimmunity (IA) and type 1 diabetes in The Environmental Determinants of Diabetes in the Young (TEDDY) study.

Methods

The TEDDY study recruited children at high genetic risk for type 1 diabetes at birth, and prospectively follows them for the development of IA and type 1 diabetes (n = 8556). A questionnaire on the mother’s diet in late pregnancy was completed by 3–4 months postpartum. The maternal daily intake was estimated from a food frequency questionnaire for eight food groups: gluten-containing foods, non-gluten cereals, fresh milk, sour milk, cheese products, soy products, lean/medium-fat fish and fatty fish. For each food, we described the distribution of maternal intake among the four participating countries in the TEDDY study and tested the association of tertile of maternal food consumption with risk of IA and type 1 diabetes using forward selection time-to-event Cox regression.

Results

By 28 February 2019, 791 cases of IA and 328 cases of type 1 diabetes developed in TEDDY. There was no association between maternal late-pregnancy consumption of gluten-containing foods or any of the other selected foods and risk of IA, type 1 diabetes, insulin autoantibody-first IA or GAD autoantibody-first IA (all p ≥ 0.01). Maternal gluten-containing food consumption in late pregnancy was higher in Sweden (242 g/day), Germany (247 g/day) and Finland (221 g/day) than in the USA (199 g/day) (pairwise p < 0.05).

Conclusions/interpretation

Maternal food consumption during late pregnancy was not associated with offspring risk for IA or type 1 diabetes.

Trial registration

ClinicalTrials.gov NCT00279318.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

Data described in the manuscript will be made available upon request from the NIDDK Central Repository at https://www.niddkrepository.org/studies/teddy.

Abbreviations

FFQ:

Food frequency questionnaire

IA:

Islet autoimmunity

IA-2A:

Insulinoma antigen-2 autoantibody

IAA:

Insulin autoantibody

GADA:

GAD autoantibody

TEDDY:

The Environmental Determinants of Diabetes in the Young

References

  1. 1.

    Orban T, Sosenko JM, Cuthbertson D et al (2009) Pancreatic islet autoantibodies as predictors of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 32(12):2269–2274. https://doi.org/10.2337/dc09-0934

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Jacobsen LM, Larsson HE, Tamura RN et al (2019) Predicting progression to type 1 diabetes from ages 3 to 6 in islet autoantibody positive TEDDY children. Pediatr Diabetes 20(3):263–270. https://doi.org/10.1111/pedi.12812

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Norris JM, Barriga K, Klingensmith G et al (2003) Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290(13):1713–1720. https://doi.org/10.1001/jama.290.13.1713

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Uusitalo U, Lee HS, Andren Aronsson C et al (2018) Early infant diet and islet autoimmunity in the TEDDY study. Diabetes Care 41(3):522–530. https://doi.org/10.2337/dc17-1983

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Virtanen SM, Räsänen L, Ylönen K et al (1993) Early introduction of dairy products associated with increased risk of IDDM in Finnish children. The Childhood in Diabetes in Finland Study Group. Diabetes 42(12):1786–1790. https://doi.org/10.2337/diab.42.12.1786

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Virtanen SM, Takkinen HM, Nevalainen J et al (2011) Early introduction of root vegetables in infancy associated with advanced ß-cell autoimmunity in young children with human leukocyte antigen-conferred susceptibility to type 1 diabetes. Diabet Med 28(8):965–971. https://doi.org/10.1111/j.1464-5491.2011.03294.x

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Frederiksen B, Kroehl M, Lamb MM et al (2013) Infant exposures and development of type 1 diabetes mellitus: the Diabetes Autoimmunity Study in the Young (DAISY). JAMA Pediatr 167(9):808–815. https://doi.org/10.1001/jamapediatrics.2013.317

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Lamb MM, Frederiksen B, Seifert JA, Kroehl M, Rewers M, Norris JM (2015) Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young. Diabetologia 58(9):2027–2034. https://doi.org/10.1007/s00125-015-3657-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Lamb MM, Miller M, Seifert JA et al (2015) The effect of childhood cow's milk intake and HLA-DR genotype on risk of islet autoimmunity and type 1 diabetes: the Diabetes Autoimmunity Study in the Young. Pediatr Diabetes 16(1):31–38. https://doi.org/10.1111/pedi.12115

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Syrjala E, Nevalainen J, Peltonen J et al (2019) A joint modeling approach for childhood meat, fish and egg consumption and the risk of advanced islet autoimmunity. Sci Rep 9(1):7760. https://doi.org/10.1038/s41598-019-44196-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Virtanen SM, Nevalainen J, Kronberg-Kippila C et al (2012) Food consumption and advanced beta cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes: a nested case-control design. Am J Clin Nutr 95(2):471–478. https://doi.org/10.3945/ajcn.111.018879

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Fronczak CM, Baron AE, Chase HP et al (2003) In utero dietary exposures and risk of islet autoimmunity in children. Diabetes Care 26(12):3237–3242. https://doi.org/10.2337/diacare.26.12.3237

    Article  PubMed  Google Scholar 

  13. 13.

    Lamb MM, Myers MA, Barriga K, Zimmet PZ, Rewers M, Norris JM (2008) Maternal diet during pregnancy and islet autoimmunity in offspring. Pediatr Diabetes 9(2):135–141. https://doi.org/10.1111/j.1399-5448.2007.00311.x

    Article  PubMed  Google Scholar 

  14. 14.

    Virtanen SM, Uusitalo L, Kenward MG et al (2011) Maternal food consumption during pregnancy and risk of advanced β-cell autoimmunity in the offspring. Pediatr Diabetes 12(2):95–99. https://doi.org/10.1111/j.1399-5448.2010.00668.x

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Brekke HK, Ludvigsson J (2010) Daily vegetable intake during pregnancy negatively associated to islet autoimmunity in the offspring--the ABIS study. Pediatr Diabetes 11(4):244–250. https://doi.org/10.1111/j.1399-5448.2009.00563.x

    Article  PubMed  Google Scholar 

  16. 16.

    Niinisto S, Takkinen HM, Uusitalo L et al (2014) Maternal dietary fatty acid intake during pregnancy and the risk of preclinical and clinical type 1 diabetes in the offspring. Br J Nutr 111(5):895–903. https://doi.org/10.1017/s0007114513003073

    Article  PubMed  Google Scholar 

  17. 17.

    Barker DJP (1997) Maternal nutrition, fetal nutrition, and disease in later life. Nutrition 13(9):807–813. https://doi.org/10.1016/S0899-9007(97)00193-7

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE (2004) Maternal nutrition and fetal development. J Nutr 134(9):2169–2172. https://doi.org/10.1093/jn/134.9.2169

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Yajnik CS, Deshpande SS, Jackson AA et al (2008) Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51(1):29–38. https://doi.org/10.1007/s00125-007-0793-y

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ludvigsson J (2003) Cow-milk-free diet during last trimester of pregnancy does not influence diabetes-related autoantibodies in nondiabetic children. Ann N Y Acad Sci 1005:275–278. https://doi.org/10.1196/annals.1288.042

    Article  PubMed  Google Scholar 

  21. 21.

    Andren Aronsson C, Lee HS, Hard Af Segerstad EM et al (2019) Association of gluten intake during the first 5 years of life with incidence of celiac disease autoimmunity and celiac disease among children at increased risk. JAMA 322(6):514–523. https://doi.org/10.1001/jama.2019.10329

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Mårild K, Dong F, Lund-Blix NA et al (2019) Gluten intake and risk of celiac disease: long-term follow-up of an at-risk birth cohort. Am J Gastroenterol 114(8):1307–1314. https://doi.org/10.14309/ajg.0000000000000255

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Lund-Blix NA, Mårild K, Tapia G, Norris JM, Stene LC, Størdal K (2019) Gluten intake in early childhood and risk of celiac disease in childhood: a nationwide cohort study. Am J Gastroenterol 114(8):1299–1306. https://doi.org/10.14309/ajg.0000000000000331

    Article  PubMed  Google Scholar 

  24. 24.

    Lund-Blix NA, Dong F, Marild K et al (2019) Gluten intake and risk of islet autoimmunity and progression to type 1 diabetes in children at increased risk of the disease: the Diabetes Autoimmunity Study in the Young (DAISY). Diabetes Care 42(5):789–796. https://doi.org/10.2337/dc18-2315

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hakola L, Miettinen ME, Syrjala E et al (2019) Association of cereal, gluten, and dietary fiber intake with islet autoimmunity and type 1 diabetes. JAMA Pediatr 173(10):953–960. https://doi.org/10.1001/jamapediatrics.2019.2564

    Article  PubMed Central  Google Scholar 

  26. 26.

    Antvorskov JC, Halldorsson TI, Josefsen K et al (2018) Association between maternal gluten intake and type 1 diabetes in offspring: national prospective cohort study in Denmark. BMJ 362:k3547. https://doi.org/10.1136/bmj.k3547

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lund-Blix NA, Tapia G, Mårild K et al (2020) Maternal and child gluten intake and association with type 1 diabetes: the Norwegian Mother and Child Cohort Study. PLoS Med 17(3):e1003032. https://doi.org/10.1371/journal.pmed.1003032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hagopian WA, Erlich H, Lernmark A et al (2011) The Environmental Determinants of Diabetes in the Young (TEDDY): genetic criteria and international diabetes risk screening of 421 000 infants. Pediatr Diabetes 12(8):733–743. https://doi.org/10.1111/j.1399-5448.2011.00774.x

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Liu E, Lee H-S, Aronsson CA et al (2014) Risk of pediatric celiac disease according to HLA haplotype and country. N Engl J Med 371(1):42–49. https://doi.org/10.1056/NEJMoa1313977

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lernmark B, Johnson SB, Vehik K et al (2011) Enrollment experiences in a pediatric longitudinal observational study: the Environmental Determinants of Diabetes in the Young (TEDDY) study. Contemp Clin Trials 32(4):517–523. https://doi.org/10.1016/j.cct.2011.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Vehik K, Fiske SW, Logan CA et al (2013) Methods, quality control and specimen management in an international multicentre investigation of type 1 diabetes: TEDDY. Diabetes Metab Res Rev 29(7):557–567. https://doi.org/10.1002/dmrr.2427

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Krischer JP, Liu X, Lernmark A et al (2017) The influence of type 1 diabetes genetic susceptibility regions, age, sex, and family history on the progression from multiple autoantibodies to type 1 diabetes: a TEDDY study report. Diabetes 66(12):3122–3129. https://doi.org/10.2337/db17-0261

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Krischer JP, Lynch KF, Lernmark A et al (2017) Genetic and environmental interactions modify the risk of diabetes-related autoimmunity by 6 years of age: the TEDDY study. Diabetes Care 40(9):1194–1202. https://doi.org/10.2337/dc17-0238

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Krischer JP, Lynch KF, Schatz DA et al (2015) The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia 58(5):980–987. https://doi.org/10.1007/s00125-015-3514-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Lynch KF, Lee HS, Törn C et al (2018) Gestational respiratory infections interacting with offspring HLA and CTLA-4 modifies incident β-cell autoantibodies. J Autoimmun 86:93–103. https://doi.org/10.1016/j.jaut.2017.09.005

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Uusitalo U, Lee HS, Aronsson CA et al (2015) Gluten consumption during late pregnancy and risk of celiac disease in the offspring: the TEDDY birth cohort. Am J Clin Nutr 102(5):1216–1221. https://doi.org/10.3945/ajcn.115.119370

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Elding Larsson H, Vehik K, Haller MJ et al (2016) Growth and risk for islet autoimmunity and progression to type 1 diabetes in early childhood: The Environmental Determinants of Diabetes in the Young Study. Diabetes 65(7):1988–1995. https://doi.org/10.2337/db15-1180

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sharma A, Liu X, Hadley D et al (2018) Identification of non-HLA genes associated with development of islet autoimmunity and type 1 diabetes in the prospective TEDDY cohort. J Autoimmun 89:90–100. https://doi.org/10.1016/j.jaut.2017.12.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Hummel S, Beyerlein A, Tamura R et al (2017) First infant formula type and risk of islet autoimmunity in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Diabetes Care 40(3):398–404. https://doi.org/10.2337/dc16-1624

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Mejía-Rodríguez F, Orjuela MA, García-Guerra A, Quezada-Sanchez AD, Neufeld LM (2012) Validation of a novel method for retrospectively estimating nutrient intake during pregnancy using a semi-quantitative food frequency questionnaire. Matern Child Health J 16(7):1468–1483. https://doi.org/10.1007/s10995-011-0912-8

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Bunin GR, Gyllstrom ME, Brown JE, Kahn EB, Kushi LH (2001) Recall of diet during a past pregnancy. Am J Epidemiol 154(12):1136–1142. https://doi.org/10.1093/aje/154.12.1136

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    TEDDY Study Group (2007) The Environmental Determinants of Diabetes in the Young (TEDDY) study: study design. Pediatr Diabetes 8(5):286–298. https://doi.org/10.1111/j.1399-5448.2007.00269.x

    Article  Google Scholar 

  43. 43.

    Lee HS, Burkhardt BR, McLeod W et al (2014) Biomarker discovery study design for type 1 diabetes in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Diabetes Metab Res Rev 30(5):424–434. https://doi.org/10.1002/dmrr.2510

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thank you to the participants and families of the TEDDY study, whose continued commitment make such research possible. The TEDDY Study Group is acknowledged for excellent collaboration (see the ESM).

Authors’ relationships and activities

The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Funding

The TEDDY study is funded by U01 DK63829, U01 DK63861, U01 DK63821, U01 DK63865, U01 DK63863, U01 DK63836, U01 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821, UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4 DK106955, UC4 DK112243, UC4 DK117483 and Contract No. HHSN267200700014C from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Allergy and Infectious Diseases (NIAID), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the National Institute of Environmental Health Sciences (NIEHS), the Centers for Disease Control and Prevention (CDC) and JDRF. This work was supported in part by the NIH/NCATS Clinical and Translational Science Awards to the University of Florida (UL1 TR000064) and the University of Colorado (UL1 TR002535).

Author information

Affiliations

Authors

Consortia

Contributions

RKJ led the interpretation of data, drafted the manuscript and approved the final version. RT led the statistical analyses, critically revised the manuscript for intellectual content and approved the final version. NF led the study design, critically revised the manuscript for intellectual content and approved the final version. UU, JY, SN, CAA, A-GZ, WH, MR, JT, BA, JK, SMV and JMN substantially contributed to the study design and the acquisition and interpretation of data, critically revised the manuscript for intellectual content and approved the final version. JMN is the guarantor of this work and, as such, accepts full responsibility for the work and/or the conduct of the study, had access to the data and controlled the decision to publish.

Corresponding author

Correspondence to Jill M. Norris.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM

(PDF 114 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johnson, R.K., Tamura, R., Frank, N. et al. Maternal food consumption during late pregnancy and offspring risk of islet autoimmunity and type 1 diabetes. Diabetologia (2021). https://doi.org/10.1007/s00125-021-05446-y

Download citation

Keywords

  • Autoimmunity
  • Gluten
  • Maternal diet
  • Pregnancy
  • Type 1 diabetes