Macleod JJR (1922) Treatment of diabetes mellitus by pancreatic extracts. Can Med Assoc J 12(6):425–426
Google Scholar
Himsworth HP (2013) Diabetes mellitus: its differentiation into insulin-sensitive and insulin-insensitive types. 1936. Int J Epidemiol 42(6):1594–1598. https://doi.org/10.1093/ije/dyt203
CAS
Article
PubMed
Google Scholar
Freychet P, Roth J, Neville DM Jr (1971) Insulin receptors in the liver: specific binding of (125 I)insulin to the plasma membrane and its relation to insulin bioactivity. Proc Natl Acad Sci U S A 68(8):1833–1837. https://doi.org/10.1073/pnas.68.8.1833
CAS
Article
PubMed
PubMed Central
Google Scholar
Kasuga M, Zick Y, Blithe DL, Crettaz M, Kahn CR (1982) Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature 298(5875):667–669. https://doi.org/10.1038/298667a0
CAS
Article
PubMed
Google Scholar
Chevalier S, Burgess SC, Malloy CR, Gougeon R, Marliss EB, Morais JA (2006) The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole-body protein catabolism. Diabetes 55(3):675–681. https://doi.org/10.2337/diabetes.55.03.06.db05-1117
CAS
Article
PubMed
Google Scholar
Perry RJ, Camporez JP, Kursawe R et al (2015) Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160(4):745–758. https://doi.org/10.1016/j.cell.2015.01.012
CAS
Article
PubMed
PubMed Central
Google Scholar
Seino S, Seino M, Nishi S, Bell GI (1989) Structure of the human insulin receptor gene and characterization of its promoter. Proc Natl Acad Sci U S A 86(1):114–118. https://doi.org/10.1073/pnas.86.1.114
CAS
Article
PubMed
PubMed Central
Google Scholar
Belfiore A, Malaguarnera R, Vella V et al (2017) Insulin receptor isoforms in physiology and disease: an updated view. Endocr Rev 38(5):379–431. https://doi.org/10.1210/er.2017-00073
Article
PubMed
PubMed Central
Google Scholar
Cai W, Sakaguchi M, Kleinridders A et al (2017) Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nat Commun 8:14892. https://doi.org/10.1038/ncomms14892
CAS
Article
PubMed
PubMed Central
Google Scholar
Urso B, Cope DL, Kalloo-Hosein HE et al (1999) Differences in signaling properties of the cytoplasmic domains of the insulin receptor and insulin-like growth factor receptor in 3T3-L1 adipocytes. J Biol Chem 274(43):30864–30873. https://doi.org/10.1074/jbc.274.43.30864
CAS
Article
PubMed
Google Scholar
Scapin G, Dandey VP, Zhang Z et al (2018) Structure of the insulin receptor-insulin complex by single-particle cryo-EM analysis. Nature 556(7699):122–125. https://doi.org/10.1038/nature26153
CAS
Article
PubMed
PubMed Central
Google Scholar
Uchikawa E, Choi E, Shang G, Yu H, Bai XC (2019) Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. eLife 8. https://doi.org/10.7554/eLife.48630
Thirone AC, Huang C, Klip A (2006) Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol Metab 17(2):72–78. https://doi.org/10.1016/j.tem.2006.01.005
CAS
Article
PubMed
Google Scholar
Araki E, Lipes MA, Patti ME et al (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372(6502):186–190. https://doi.org/10.1038/372186a0
CAS
Article
PubMed
Google Scholar
Kaburagi Y, Satoh S, Tamemoto H et al (1997) Role of insulin receptor substrate-1 and pp60 in the regulation of insulin-induced glucose transport and GLUT4 translocation in primary adipocytes. J Biol Chem 272(41):25839–25844. https://doi.org/10.1074/jbc.272.41.25839
CAS
Article
PubMed
Google Scholar
Withers DJ, Gutierrez JS, Towery H et al (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391(6670):900–904. https://doi.org/10.1038/36116
CAS
Article
PubMed
Google Scholar
Rabiee A, Kruger M, Ardenkjaer-Larsen J, Kahn CR, Emanuelli B (2018) Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action. Cell Signal 47:1–15. https://doi.org/10.1016/j.cellsig.2018.03.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Ussar S, Bezy O, Bluher M, Kahn CR (2012) Glypican-4 enhances insulin signaling via interaction with the insulin receptor and serves as a novel adipokine. Diabetes 61(9):2289–2298. https://doi.org/10.2337/db11-1395
CAS
Article
PubMed
PubMed Central
Google Scholar
Maddux BA, Goldfine ID (2000) Membrane glycoprotein PC-1 inhibition of insulin receptor function occurs via direct interaction with the receptor alpha-subunit. Diabetes 49(1):13–19. https://doi.org/10.2337/diabetes.49.1.13
CAS
Article
PubMed
Google Scholar
Batista TM, Dagdeviren S, Carroll SH et al (2020) Arrestin domain-containing 3 (Arrdc3) modulates insulin action and glucose metabolism in liver. Proc Natl Acad Sci U S A 117(12):6733–6740. https://doi.org/10.1073/pnas.1922370117
CAS
Article
PubMed
PubMed Central
Google Scholar
Sakaguchi M, Cai W, Wang CH et al (2019) FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nat Commun 10(1):1582. https://doi.org/10.1038/s41467-019-09418-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Choi E, Zhang X, Xing C, Yu H (2016) Mitotic checkpoint regulators control insulin signaling and metabolic homeostasis. Cell 166(3):567–581. https://doi.org/10.1016/j.cell.2016.05.074
CAS
Article
PubMed
PubMed Central
Google Scholar
Mora A, Komander D, van Aalten DM, Alessi DR (2004) PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15(2):161–170. https://doi.org/10.1016/j.semcdb.2003.12.022
CAS
Article
PubMed
Google Scholar
Bilanges B, Posor Y, Vanhaesebroeck B (2019) PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol 20(9):515–534. https://doi.org/10.1038/s41580-019-0129-z
CAS
Article
PubMed
Google Scholar
Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169(3):381–405. https://doi.org/10.1016/j.cell.2017.04.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Feng J, Park J, Cron P, Hess D, Hemmings BA (2004) Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem 279(39):41189–41196. https://doi.org/10.1074/jbc.M406731200
CAS
Article
PubMed
Google Scholar
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789. https://doi.org/10.1038/378785a0
CAS
Article
PubMed
Google Scholar
Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D (2007) Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab 6(3):208–216. https://doi.org/10.1016/j.cmet.2007.08.006
CAS
Article
PubMed
Google Scholar
Nakae J, Barr V, Accili D (2000) Differential regulation of gene expression by insulin and IGF-1 receptors correlates with phosphorylation of a single amino acid residue in the forkhead transcription factor FKHR. EMBO J 19(5):989–996. https://doi.org/10.1093/emboj/19.5.989
CAS
Article
PubMed
PubMed Central
Google Scholar
O’Neill BT, Lee KY, Klaus K et al (2016) Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. J Clin Invest 126(9):3433–3446. https://doi.org/10.1172/JCI86522
Article
PubMed
PubMed Central
Google Scholar
Sancak Y, Thoreen CC, Peterson TR et al (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915. https://doi.org/10.1016/j.molcel.2007.03.003
CAS
Article
PubMed
Google Scholar
Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J (2002) Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A 99(21):13571–13576. https://doi.org/10.1073/pnas.202476899
CAS
Article
PubMed
PubMed Central
Google Scholar
Karlsson HK, Zierath JR, Kane S, Krook A, Lienhard GE, Wallberg-Henriksson H (2005) Insulin-stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects. Diabetes 54(6):1692–1697. https://doi.org/10.2337/diabetes.54.6.1692
CAS
Article
PubMed
Google Scholar
Sano H, Kane S, Sano E et al (2003) Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278(17):14599–14602. https://doi.org/10.1074/jbc.C300063200
CAS
Article
PubMed
Google Scholar
Humphrey SJ, Azimifar SB, Mann M (2015) High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol 33(9):990–995. https://doi.org/10.1038/nbt.3327
CAS
Article
PubMed
Google Scholar
Humphrey SJ, Yang G, Yang P et al (2013) Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab 17(6):1009–1020. https://doi.org/10.1016/j.cmet.2013.04.010
CAS
Article
PubMed
PubMed Central
Google Scholar
Batista TM, Garcia-Martin R, Cai W et al (2019) Multi-dimensional transcriptional remodeling by physiological insulin in vivo. Cell Rep 26(12):3429–3443 e3423. https://doi.org/10.1016/j.celrep.2019.02.081
CAS
Article
PubMed
PubMed Central
Google Scholar
Karlsson HK, Chibalin AV, Koistinen HA et al (2009) Kinetics of GLUT4 trafficking in rat and human skeletal muscle. Diabetes 58(4):847–854. https://doi.org/10.2337/db08-1539
CAS
Article
PubMed
PubMed Central
Google Scholar
Bruss MD, Arias EB, Lienhard GE, Cartee GD (2005) Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes 54(1):41–50. https://doi.org/10.2337/diabetes.54.1.41
CAS
Article
PubMed
Google Scholar
Huang X, Vaag A, Hansson M, Weng J, Laurila E, Groop L (2000) Impaired insulin-stimulated expression of the glycogen synthase gene in skeletal muscle of type 2 diabetic patients is acquired rather than inherited. J Clin Endocrinol Metab 85(4):1584–1590. https://doi.org/10.1210/jcem.85.4.6535
CAS
Article
PubMed
Google Scholar
Sears DD, Hsiao G, Hsiao A et al (2009) Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization. Proc Natl Acad Sci U S A 106(44):18745–18750. https://doi.org/10.1073/pnas.0903032106
Article
PubMed
PubMed Central
Google Scholar
Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS (2003) Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci U S A 100(13):7996–8001. https://doi.org/10.1073/pnas.1332551100
CAS
Article
PubMed
PubMed Central
Google Scholar
O’Brien RM, Granner DK (1991) Regulation of gene expression by insulin. Biochem J 278(Pt 3):609–619. https://doi.org/10.1042/bj2780609
Article
PubMed
PubMed Central
Google Scholar
Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868. https://doi.org/10.1016/S0092-8674(00)80595-4
CAS
Article
PubMed
Google Scholar
Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME (2001) Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 21(3):952–965. https://doi.org/10.1128/MCB.21.3.952-965.2001
CAS
Article
PubMed
PubMed Central
Google Scholar
Haeusler RA, Hartil K, Vaitheesvaran B et al (2014) Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat Commun 5:5190. https://doi.org/10.1038/ncomms6190
CAS
Article
PubMed
Google Scholar
Sandri M, Sandri C, Gilbert A et al (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412. https://doi.org/10.1016/s0092-8674(04)00400-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Nakae J, Cao Y, Oki M et al (2008) Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure. Diabetes 57(3):563–576. https://doi.org/10.2337/db07-0698
CAS
Article
PubMed
Google Scholar
I OS, Zhang W, Wasserman DH et al (2015) FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat Commun 6:7079. https://doi.org/10.1038/ncomms8079
CAS
Article
Google Scholar
Lu M, Wan M, Leavens KF et al (2012) Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat Med 18(3):388–395. https://doi.org/10.1038/nm.2686
CAS
Article
PubMed
PubMed Central
Google Scholar
O’Neill BT, Bhardwaj G, Penniman CM et al (2019) FoxO transcription factors are critical regulators of diabetes-related muscle atrophy. Diabetes 68(3):556–570. https://doi.org/10.2337/db18-0416
CAS
Article
PubMed
Google Scholar
He L, Gomes AP, Wang X et al (2018) mTORC1 promotes metabolic reprogramming by the suppression of GSK3-dependent Foxk1 phosphorylation. Mol Cell 70(5):949–960 e944. https://doi.org/10.1016/j.molcel.2018.04.024
CAS
Article
PubMed
PubMed Central
Google Scholar
Sukonina V, Ma H, Zhang W et al (2019) FOXK1 and FOXK2 regulate aerobic glycolysis. Nature 566(7743):279–283. https://doi.org/10.1038/s41586-019-0900-5
CAS
Article
PubMed
Google Scholar
Shimano H, Sato R (2017) SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol 13(12):710–730. https://doi.org/10.1038/nrendo.2017.91
CAS
Article
PubMed
Google Scholar
Goldfine ID, Smith GJ (1976) Binding of insulin to isolated nuclei. Proc Natl Acad Sci U S A 73(5):1427–1431. https://doi.org/10.1073/pnas.73.5.1427
CAS
Article
PubMed
PubMed Central
Google Scholar
Hancock ML, Meyer RC, Mistry M et al (2019) Insulin receptor associates with promoters genome-wide and regulates gene expression. Cell 177(3):722–736 e722. https://doi.org/10.1016/j.cell.2019.02.030
CAS
Article
PubMed
PubMed Central
Google Scholar
Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14(2):88–98. https://doi.org/10.1038/nrendo.2017.151
Article
PubMed
Google Scholar
Roden M, Shulman GI (2019) The integrative biology of type 2 diabetes. Nature 576(7785):51–60. https://doi.org/10.1038/s41586-019-1797-8
CAS
Article
PubMed
Google Scholar
Zaharia OP, Strassburger K, Strom A et al (2019) Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol 7(9):684–694. https://doi.org/10.1016/S2213-8587(19)30187-1
Article
PubMed
Google Scholar
Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR (1992) Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340(8825):925–929. https://doi.org/10.1016/0140-6736(92)92814-V
CAS
Article
PubMed
Google Scholar
Eriksson J, Franssila-Kallunki A, Ekstrand A et al (1989) Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med 321(6):337–343. https://doi.org/10.1056/NEJM198908103210601
CAS
Article
PubMed
Google Scholar
Rothman DL, Magnusson I, Cline G et al (1995) Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 92(4):983–987
CAS
Article
PubMed
PubMed Central
Google Scholar
Cline GW, Petersen KF, Krssak M et al (1999) Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 341(4):240–246. https://doi.org/10.1056/NEJM199907223410404
CAS
Article
PubMed
Google Scholar
Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273. https://doi.org/10.1038/ng1180
CAS
Article
PubMed
Google Scholar
Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100(14):8466–8471. https://doi.org/10.1073/pnas.1032913100
CAS
Article
PubMed
PubMed Central
Google Scholar
Gregor MF, Hotamisligil GS (2010) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445
Article
Google Scholar
Newgard CB (2012) Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab 15(5):606–614. https://doi.org/10.1016/j.cmet.2012.01.024
CAS
Article
PubMed
PubMed Central
Google Scholar
Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871. https://doi.org/10.1016/j.cell.2012.02.017
CAS
Article
PubMed
PubMed Central
Google Scholar
Dunaif A, Xia J, Book CB, Schenker E, Tang Z (1995) Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest 96(2):801–810. https://doi.org/10.1172/JCI118126
CAS
Article
PubMed
PubMed Central
Google Scholar
Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51(7):2005–2011
CAS
Article
PubMed
Google Scholar
Lyu K, Zhang Y, Zhang D et al (2020) A membrane-bound diacylglycerol species induces PKC-mediated hepatic insulin resistance. Cell Metab 32(4):654–664 e655. https://doi.org/10.1016/j.cmet.2020.08.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Moeschel K, Beck A, Weigert C et al (2004) Protein kinase C-zeta-induced phosphorylation of Ser318 in insulin receptor substrate-1 (IRS-1) attenuates the interaction with the insulin receptor and the tyrosine phosphorylation of IRS-1. J Biol Chem 279(24):25157–25163. https://doi.org/10.1074/jbc.M402477200
CAS
Article
PubMed
Google Scholar
Weigert C, Hennige AM, Brischmann T et al (2005) The phosphorylation of Ser318 of insulin receptor substrate 1 is not per se inhibitory in skeletal muscle cells but is necessary to trigger the attenuation of the insulin-stimulated signal. J Biol Chem 280(45):37393–37399
CAS
Article
PubMed
Google Scholar
Paz K, Hemi R, LeRoith D et al (1997) A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem 272(47):29911–29918. https://doi.org/10.1074/jbc.272.47.29911
CAS
Article
PubMed
Google Scholar
Glass CK, Olefsky JM (2012) Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 15(5):635–645. https://doi.org/10.1016/j.cmet.2012.04.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Johnson AM, Olefsky JM (2013) The origins and drivers of insulin resistance. Cell 152(4):673–684. https://doi.org/10.1016/j.cell.2013.01.041
CAS
Article
PubMed
Google Scholar
Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121(6):2094–2101. https://doi.org/10.1172/JCI45887
CAS
Article
PubMed
PubMed Central
Google Scholar
Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117(1):175–184. https://doi.org/10.1172/JCI29881
CAS
Article
PubMed
PubMed Central
Google Scholar
Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18(3):363–374. https://doi.org/10.1038/nm.2627
CAS
Article
PubMed
Google Scholar
Lebrun P, Van Obberghen E (2008) SOCS proteins causing trouble in insulin action. Acta Physiol 192(1):29–36. https://doi.org/10.1111/j.1748-1716.2007.01782.x
CAS
Article
Google Scholar
Liu J, Ibi D, Taniguchi K et al (2016) Inflammation improves glucose homeostasis through IKKbeta-XBP1s interaction. Cell 167(4):1052–1066 e1018. https://doi.org/10.1016/j.cell.2016.10.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Raciti M, Lotti LV, Valia S, Pulcinelli FM, Di Renzo L (2012) JNK2 is activated during ER stress and promotes cell survival. Cell Death Dis 3:e429. https://doi.org/10.1038/cddis.2012.167
CAS
Article
PubMed
PubMed Central
Google Scholar
Cummings NE, Williams EM, Kasza I et al (2018) Restoration of metabolic health by decreased consumption of branched-chain amino acids. J Physiol 596(4):623–645. https://doi.org/10.1113/JP275075
CAS
Article
PubMed
Google Scholar
Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9(4):311–326. https://doi.org/10.1016/j.cmet.2009.02.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Saad MJ, Santos A, Prada PO (2016) Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology 31(4):283–293. https://doi.org/10.1152/physiol.00041.2015
CAS
Article
PubMed
Google Scholar
Copps KD, White MF (2012) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55(10):2565–2582. https://doi.org/10.1007/s00125-012-2644-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Li M, Vienberg SG, Bezy O, O’Neill BT, Kahn CR (2015) Role of PKCdelta in insulin sensitivity and skeletal muscle metabolism. Diabetes 64(12):4023–4032. https://doi.org/10.2337/db14-1891
CAS
Article
PubMed
PubMed Central
Google Scholar
Thomou T, Mori MA, Dreyfuss JM et al (2017) Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542(7642):450–455. https://doi.org/10.1038/nature21365
CAS
Article
PubMed
PubMed Central
Google Scholar
Ying W, Riopel M, Bandyopadhyay G et al (2017) Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171(2):372–384 e312. https://doi.org/10.1016/j.cell.2017.08.035
CAS
Article
PubMed
Google Scholar
Bouzakri K, Roques M, Gual P et al (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52(6):1319–1325. https://doi.org/10.2337/diabetes.52.6.1319
CAS
Article
PubMed
Google Scholar
Cozzone D, Frojdo S, Disse E et al (2008) Isoform-specific defects of insulin stimulation of Akt/protein kinase B (PKB) in skeletal muscle cells from type 2 diabetic patients. Diabetologia 51(3):512–521. https://doi.org/10.1007/s00125-007-0913-8
CAS
Article
PubMed
Google Scholar
Gaster M, Brusgaard K, Handberg A, Hojlund K, Wojtaszewski JF, Beck-Nielsen H (2004) The primary defect in glycogen synthase activity is not based on increased glycogen synthase kinase-3alpha activity in diabetic myotubes. Biochem Biophys Res Commun 319(4):1235–1240. https://doi.org/10.1016/j.bbrc.2004.05.109
CAS
Article
PubMed
Google Scholar
Gaster M, Petersen I, Hojlund K, Poulsen P, Beck-Nielsen H (2002) The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity. Diabetes 51(4):921–927. https://doi.org/10.2337/diabetes.51.4.921
CAS
Article
PubMed
Google Scholar
McIntyre EA, Halse R, Yeaman SJ, Walker M (2004) Cultured muscle cells from insulin-resistant type 2 diabetes patients have impaired insulin, but normal 5-amino-4-imidazolecarboxamide riboside-stimulated, glucose uptake. J Clin Endocrinol Metab 89(7):3440–3448. https://doi.org/10.1210/jc.2003-031919
CAS
Article
PubMed
Google Scholar
Burkart AM, Tan K, Warren L et al (2016) Insulin resistance in human iPS cells reduces mitochondrial size and function. Sci Rep 6:22788. https://doi.org/10.1038/srep22788
CAS
Article
PubMed
PubMed Central
Google Scholar
Iovino S, Burkart AM, Kriauciunas K et al (2014) Genetic insulin resistance is a potent regulator of gene expression and proliferation in human iPS cells. Diabetes 63(12):4130–4142. https://doi.org/10.2337/db14-0109
CAS
Article
PubMed
PubMed Central
Google Scholar
Iovino S, Burkart AM, Warren L, Patti ME, Kahn CR (2016) Myotubes derived from human-induced pluripotent stem cells mirror in vivo insulin resistance. Proc Natl Acad Sci U S A 113(7):1889–1894. https://doi.org/10.1073/pnas.1525665113
CAS
Article
PubMed
PubMed Central
Google Scholar
Gupta MK, Vethe H, Softic S et al (2020) Leptin receptor signaling regulates protein synthesis pathways and neuronal differentiation in pluripotent stem cells. Stem Cell Rep 15(5):1067–1079. https://doi.org/10.1016/j.stemcr.2020.10.001
CAS
Article
Google Scholar
Teo AK, Windmueller R, Johansson BB et al (2013) Derivation of human induced pluripotent stem cells from patients with maturity onset diabetes of the young. J Biol Chem 288(8):5353–5356. https://doi.org/10.1074/jbc.C112.428979
CAS
Article
PubMed
PubMed Central
Google Scholar
Batista TM, Jayavelu AK, Wewer Albrechtsen NJ et al (2020) A cell-autonomous signature of dysregulated protein phosphorylation underlies muscle insulin resistance in type 2 diabetes. Cell Metab 32:844–859. https://doi.org/10.1016/j.cmet.2020.08.007
CAS
Article
PubMed
PubMed Central
Google Scholar
Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7(2):85–96. https://doi.org/10.1038/nrm1837
CAS
Article
PubMed
Google Scholar
Barres R, Osler ME, Yan J et al (2009) Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 10(3):189–198. https://doi.org/10.1016/j.cmet.2009.07.011
CAS
Article
PubMed
Google Scholar
Ribel-Madsen R, Fraga MF, Jacobsen S et al (2012) Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One 7(12):e51302. https://doi.org/10.1371/journal.pone.0051302
CAS
Article
PubMed
PubMed Central
Google Scholar
Frobel J, Hemeda H, Lenz M et al (2014) Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Rep 3(3):414–422. https://doi.org/10.1016/j.stemcr.2014.07.003
CAS
Article
Google Scholar
Vujkovic M, Keaton JM, Lynch JA et al (2020) Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet 52(7):680–691. https://doi.org/10.1038/s41588-020-0637-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Miguel-Escalada I, Bonas-Guarch S, Cebola I et al (2019) Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nat Genet 51(7):1137–1148. https://doi.org/10.1038/s41588-019-0457-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Williams K, Ingerslev LR, Bork-Jensen J et al (2020) Skeletal muscle enhancer interactions identify genes controlling whole-body metabolism. Nat Commun 11(1):2695. https://doi.org/10.1038/s41467-020-16537-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Claussnitzer M, Dankel SN, Kim KH et al (2015) FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 373(10):895–907. https://doi.org/10.1056/NEJMoa1502214
CAS
Article
PubMed
PubMed Central
Google Scholar
Manning AK, Hivert MF, Scott RA et al (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 44(6):659–669. https://doi.org/10.1038/ng.2274
CAS
Article
PubMed
PubMed Central
Google Scholar
Nigi L, Grieco GE, Ventriglia G et al (2018) MicroRNAs as regulators of insulin signaling: research updates and potential therapeutic perspectives in type 2 diabetes. Int J Mol Sci 19(12):3705. https://doi.org/10.3390/ijms19123705
CAS
Article
PubMed Central
Google Scholar
Massart J, Sjogren RJO, Lundell LS et al (2017) Altered miR-29 expression in type 2 diabetes influences glucose and lipid metabolism in skeletal muscle. Diabetes 66(7):1807–1818. https://doi.org/10.2337/db17-0141
CAS
Article
PubMed
Google Scholar
Katayama M, Wiklander OPB, Fritz T et al (2018) Circulating exosomal miR-20b-5p is elevated in type 2 diabetes and could impair insulin action in human skeletal muscle. Diabetes 68(3):515–526. https://doi.org/10.2337/db18-0470
Article
PubMed
Google Scholar
Henriksen TI, Davidsen PK, Pedersen M et al (2017) Dysregulation of a novel miR-23b/27b-p53 axis impairs muscle stem cell differentiation of humans with type 2 diabetes. Mol Metab 6(7):770–779. https://doi.org/10.1016/j.molmet.2017.04.006
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang L, Li P, Yang W et al (2016) Integrative transcriptome analyses of metabolic responses in mice define pivotal LncRNA metabolic regulators. Cell Metab 24(4):627–639. https://doi.org/10.1016/j.cmet.2016.08.019
CAS
Article
PubMed
PubMed Central
Google Scholar
Carter G, Miladinovic B, Patel AA, Deland L, Mastorides S, Patel NA (2015) Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. BBA Clin 4:102–107. https://doi.org/10.1016/j.bbacli.2015.09.001
Article
PubMed
PubMed Central
Google Scholar
Shi Y, Parag S, Patel R et al (2019) Stabilization of lncRNA GAS5 by a small molecule and its implications in diabetic adipocytes. Cell Chem Biol 26(3):319–330 e316. https://doi.org/10.1016/j.chembiol.2018.11.012
CAS
Article
PubMed
Google Scholar
Pihlajamaki J, Lerin C, Itkonen P et al (2011) Expression of the splicing factor gene SFRS10 is reduced in human obesity and contributes to enhanced lipogenesis. Cell Metab 14(2):208–218. https://doi.org/10.1016/j.cmet.2011.06.007
CAS
Article
PubMed
PubMed Central
Google Scholar
Weyer C, Funahashi T, Tanaka S et al (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86(5):1930–1935. https://doi.org/10.1210/jcem.86.5.7463
CAS
Article
PubMed
Google Scholar
Lynes MD, Leiria LO, Lundh M et al (2017) The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med 23(5):631–637. https://doi.org/10.1038/nm.4297
CAS
Article
PubMed
PubMed Central
Google Scholar
Yore MM, Syed I, Moraes-Vieira PM et al (2014) Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159(2):318–332. https://doi.org/10.1016/j.cell.2014.09.035
CAS
Article
PubMed
PubMed Central
Google Scholar