Noguchi GM, Huising MO (2020) Integrating the inputs that shape pancreatic islet hormone release. Nat Metab 1(12):1189–1201
Article
Google Scholar
Hartig SM, Cox AR (2020) Paracrine signaling in islet function and survival. J Mol Med 98(4):451–467. https://doi.org/10.1007/s00109-020-01887-x
Article
PubMed
Google Scholar
Almaca J, Weitz J, Rodriguez-Diaz R, Pereira E, Caicedo A (2018) The pericyte of the pancreatic islet regulates capillary diameter and local blood flow. Cell Metab 27(3):630–644. https://doi.org/10.1016/j.cmet.2018.02.016
CAS
Article
PubMed
PubMed Central
Google Scholar
Weitz JR, Makhmutova M, Almaca J et al (2018) Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity. Diabetologia 61(1):182–192. https://doi.org/10.1007/s00125-017-4416-y
CAS
Article
PubMed
Google Scholar
Hogan MF, Hull RL (2017) The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia 60(6):952–959. https://doi.org/10.1007/s00125-017-4272-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Brissova M, Aamodt K, Brahmachary P et al (2014) Islet microenvironment, modulated by vascular endothelial growth factor-A signaling, promotes beta cell regeneration. Cell Metab 19(3):498–511. https://doi.org/10.1016/j.cmet.2014.02.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Briant L, Salehi A, Vergari E, Zhang Q, Rorsman P (2016) Glucagon secretion from pancreatic alpha-cells. Ups J Med Sci 121(2):113–119. https://doi.org/10.3109/03009734.2016.1156789
Article
PubMed
PubMed Central
Google Scholar
Samols E, Marri G, Marks V (1965) Promotion of insulin secretion by glucagon. Lancet 2(7409):415–416. https://doi.org/10.1016/s0140-6736(65)90761-0
CAS
Article
PubMed
Google Scholar
DiGruccio MR, Mawla AM, Donaldson CJ et al (2016) Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol Metab 5(7):449–458. https://doi.org/10.1016/j.molmet.2016.04.007
CAS
Article
PubMed
PubMed Central
Google Scholar
Cappozi ME, Svendsen B, Encisco SE et al (2019) β-Cell tone is defined by proglucagon peptides through cyclic AMP signalling. JCI Insight 4(5):e126742. https://doi.org/10.1172/jci.insight.126742
Article
Google Scholar
Capozzi ME, Wait JB, Koech J et al (2019) Glucagon lowers glycemia when β-cells are active. JCI Insight 4(16):e129954. https://doi.org/10.1172/jci.insight.129954
Article
PubMed Central
Google Scholar
Svendsen B, Larsen O, Gabe MBN et al (2018) Insulin secretion depends on intra-islet glucagon signaling. Cell Rep 25(5):1127–1134. https://doi.org/10.1016/j.celrep.2018.10.018
CAS
Article
PubMed
Google Scholar
Chambers AP, Sorrell JE, Haller A et al (2017) The role of pancreatic preproglucagon in glucose homeostasis in mice. Cell Metab 25(4):927–934. https://doi.org/10.1016/j.cmet.2017.02.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhu L, Dattaroy D, Pham J et al (2019) Intraislet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight 4(10):e127994. https://doi.org/10.1172/jci.insight.127994
Article
PubMed Central
Google Scholar
Marchetti P, Lupi R, Bugliani M et al (2012) A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 55(12):3262–3272. https://doi.org/10.1007/s00125-012-2716-9
CAS
Article
PubMed
Google Scholar
Benner C, van der Meulen T, Caceres E, Tigyi K, Donaldson CJ, Huising MO (2014) The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics 15(1):620. https://doi.org/10.1186/1471-2164-15-620
Article
PubMed
PubMed Central
Google Scholar
Nica AC, Ongen H, Irminger JC et al (2013) Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res 23(9):1554–1562. https://doi.org/10.1101/gr.150706.112
CAS
Article
PubMed
PubMed Central
Google Scholar
Huising MO, van der Meulen T, Vaughan JM et al (2010) CRFR1 is expressed on pancreatic beta cells, promotes beta cell proliferation, and potentiates insulin secretion in a glucose-dependent manner. Proc Natl Acad Sci U S A 107(2):912–917. https://doi.org/10.1073/pnas.0913610107
Article
PubMed
Google Scholar
Rodriguez-Diaz R, Dando R, Jacques-Silva MC et al (2011) Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat Med 17(7):888–892. https://doi.org/10.1038/nm.2371
CAS
Article
PubMed
PubMed Central
Google Scholar
Ahren B (2000) Autonomic regulation of islet hormone secretion--implications for health and disease. Diabetologia 43(4):393–410. https://doi.org/10.1007/s001250051322
CAS
Article
PubMed
Google Scholar
Rorsman P, Huising MO (2018) The somatostatin-secreting pancreatic delta-cell in health and disease. Nat Rev Endocrinol 14(7):404–414. https://doi.org/10.1038/s41574-018-0020-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Taborsky GJ Jr, Ensinck JW (1984) Contribution of the pancreas to circulating somatostatin-like immunoreactivity in the normal dog. J Clin Invest 73(1):216–223. https://doi.org/10.1172/JCI111194
CAS
Article
PubMed
PubMed Central
Google Scholar
Adriaenssens AE, Svendsen B, Lam BY et al (2016) Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets. Diabetologia 59(10):2156–2165. https://doi.org/10.1007/s00125-016-4033-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Lawlor N, George J, Bolisetty M et al (2017) Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res 27(2):208–222. https://doi.org/10.1101/gr.212720.116
CAS
Article
PubMed
PubMed Central
Google Scholar
Salehi A, Qader SS, Grapengiesser E, Hellman B (2007) Pulses of somatostatin release are slightly delayed compared with insulin and antisynchronous to glucagon. Regul Pept 144(1–3):43–49. https://doi.org/10.1016/j.regpep.2007.06.003
CAS
Article
PubMed
Google Scholar
Hellman B, Salehi A, Grapengiesser E, Gylfe E (2012) Isolated mouse islets respond to glucose with an initial peak of glucagon release followed by pulses of insulin and somatostatin in antisynchrony with glucagon. Biochem Biophys Res Commun 417(4):1219–1223. https://doi.org/10.1016/j.bbrc.2011.12.113
CAS
Article
PubMed
Google Scholar
Briant LJB, Reinbothe TM, Spiliotis I, Miranda C, Rodriguez B, Rorsman P (2018) δ-cells and β-cells are electrically coupled and regulate alpha-cell activity via somatostatin. J Physiol 596(2):197–215. https://doi.org/10.1113/JP274581
CAS
Article
PubMed
Google Scholar
Nadal A, Quesada I, Soria B (1999) Homologous and heterologous asynchronicity between identified α-, β- and δ-cells within intact islets of Langerhans in the mouse. J Physiol 517(Pt 1):85–93. https://doi.org/10.1111/j.1469-7793.1999.0085z.x
CAS
Article
PubMed
PubMed Central
Google Scholar
van der Meulen T, Donaldson CJ, Caceres E et al (2015) Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat Med 21(7):769–776. https://doi.org/10.1038/nm.3872
CAS
Article
PubMed
PubMed Central
Google Scholar
Huising MO, van der Meulen T, Huang JL, Pourhosseinzadeh MS, Noguchi GM (2018) The difference δ-cells make in glucose control. Physiology 33(6):403–411. https://doi.org/10.1152/physiol.00029.2018
CAS
Article
PubMed
PubMed Central
Google Scholar
van der Meulen T, Mawla AM, DiGruccio MR et al (2017) Virgin beta cells persist throughout life at a neogenic niche within pancreatic islets. Cell Metab 25(4):911–926. https://doi.org/10.1016/j.cmet.2017.03.017
CAS
Article
PubMed
PubMed Central
Google Scholar
Dunning BE, Moltz JH, Fawcett CP (1984) Actions of neurohypophysial peptides on pancreatic hormone release. Am J Phys 246(1):E108–E114
CAS
Google Scholar
Gilon P (2020) The role of α-cells in islet function and glucose homeostasis in health and type 2 diabetes. J Mol Biol 432(5):1367–1394. https://doi.org/10.1016/j.jmb.2020.01.004
CAS
Article
PubMed
Google Scholar
Lai BK, Chae H, Gomez-Ruiz A et al (2018) Somatostatin is only partly required for the glucagonostatic effect of glucose but is necessary for the glucagonostatic effect of KATP channel blockers. Diabetes 67(11):2239–2253. https://doi.org/10.2337/db17-0880
CAS
Article
PubMed
Google Scholar
Xu SFS, Andersen DB, Izarzugaza JMG, Kuhre RE, Holst JJ (2020) In the rat pancreas, somatostatin tonically inhibits glucagon secretion and is required for glucose-induced inhibition of glucagon secretion. Acta Physiol 229(3):e13464. https://doi.org/10.1111/apha.13464
CAS
Article
Google Scholar
Yue JT, Riddell MC, Burdett E, Coy DH, Efendic S, Vranic M (2013) Amelioration of hypoglycemia via somatostatin receptor type 2 antagonism in recurrently hypoglycemic diabetic rats. Diabetes 62(7):2215–2222. https://doi.org/10.2337/db12-1523
CAS
Article
PubMed
PubMed Central
Google Scholar
Karimian N, Qin T, Liang T et al (2013) Somatostatin receptor type 2 antagonism improves glucagon counterregulation in biobreeding diabetic rats. Diabetes 62(8):2968–2977. https://doi.org/10.2337/db13-0164
CAS
Article
PubMed
PubMed Central
Google Scholar
Gylfe E, Tengholm A (2014) Neurotransmitter control of islet hormone pulsatility. Diabetes Obes Metab 16(Suppl 1):102–110. https://doi.org/10.1111/dom.12345
CAS
Article
PubMed
Google Scholar
Almaca J, Molina J, Menegaz D et al (2016) Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Rep 17(12):3281–3291. https://doi.org/10.1016/j.celrep.2016.11.072
CAS
Article
PubMed
PubMed Central
Google Scholar
Bennet H, Balhuizen A, Medina A et al (2015) Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. Peptides 71:113–120. https://doi.org/10.1016/j.peptides.2015.07.008
CAS
Article
PubMed
Google Scholar
Kim H, Toyofuku Y, Lynn FC et al (2010) Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med 16(7):804–808. https://doi.org/10.1038/nm.2173
CAS
Article
PubMed
PubMed Central
Google Scholar
Moon JH, Kim YG, Kim K et al (2020) Serotonin regulates adult β-cell mass by stimulating perinatal β-cell proliferation. Diabetes 69(2):205–214. https://doi.org/10.2337/db19-0546
CAS
Article
PubMed
Google Scholar
Rorsman P, Berggren PO, Bokvist K et al (1989) Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341(6239):233–236. https://doi.org/10.1038/341233a0
CAS
Article
PubMed
Google Scholar
Menegaz D, Walker Hagan D, Almaca J et al (2019) Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nat Metab 1(11):1110–1126. https://doi.org/10.1038/s42255-019-0135-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Rorsman P, Ashcroft FM (2018) Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol Rev 98(1):117–214. https://doi.org/10.1152/physrev.00008.2017
CAS
Article
PubMed
Google Scholar
Unger RH, Cherrington AD (2012) Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J Clin Invest 122(1):4–12. https://doi.org/10.1172/JCI60016
CAS
Article
PubMed
PubMed Central
Google Scholar
Unger RH, Orci L (2010) Paracrinology of islets and the paracrinopathy of diabetes. Proc Natl Acad Sci U S A 107(37):16009–16012. https://doi.org/10.1073/pnas.1006639107
Article
PubMed
PubMed Central
Google Scholar
Omar-Hmeadi M, Lund PE, Gandasi NR, Tengholm A, Barg S (2020) Paracrine control of alpha-cell glucagon exocytosis is compromised in human type-2 diabetes. Nat Commun 11(1):1896. https://doi.org/10.1038/s41467-020-15717-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Brissova M, Haliyur R, Saunders D et al (2018) α Cell function and gene rxpression are compromised in type 1 diabetes. Cell Rep 22(10):2667–2676. https://doi.org/10.1016/j.celrep.2018.02.032
CAS
Article
PubMed
PubMed Central
Google Scholar