Longnecker DS (2014) Anatomy and histology of the pancreas. Available from www.pancreapedia.org/reviews/anatomy-and-histology-of-pancreas. Accessed 17 May 2020
El-Gohary Y, Gittes GK (2018) Structure of islets and vascular relationship to the exocrine pancreas. Available from www.pancreapedia.org/reviews/structure-of-islets-and-vascular-relationship-to-exocrine-pancreas. Accessed 17 May 2020
Seaquist ER, Robertson RP (1992) Effects of hemipancreatectomy on pancreatic alpha and beta cell function in healthy human donors. J Clin Invest 89(6):1761–1766. https://doi.org/10.1172/JCI115779
CAS
Article
PubMed
PubMed Central
Google Scholar
Rickels MR, Bellin M, Toledo FGS et al (2013) Detection, evaluation and treatment of diabetes mellitus in chronic pancreatitis: recommendations from PancreasFest 2012. Pancreatology 13(4):336–342. https://doi.org/10.1016/j.pan.2013.05.002
Moran A, Hardin D, Rodman D et al (1999) Diagnosis, screening and management of cystic fibrosis related diabetes mellitus: a consensus conference report. Diabetes Res Clin Pract 45(1):61–73. S0168822799000583 [pii]. https://doi.org/10.1016/S0168-8227(99)00058-3
Pannala R, Leirness JB, Bamlet WR, Basu A, Petersen GM, Chari ST (2008) Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology 134(4):981–987. https://doi.org/10.1053/j.gastro.2008.01.039
CAS
Article
PubMed
Google Scholar
Lu J, Guo M, Wang H et al (2019) Association between pancreatic atrophy and loss of insulin secretory capacity in patients with type 2 diabetes mellitus. J Diabetes Res 2019:6371231–6371236. https://doi.org/10.1155/2019/6371231
Virostko J, Williams J, Hilmes M et al (2019) Pancreas volume declines during the first year after diagnosis of type 1 diabetes and exhibits altered diffusion at disease onset. Diabetes Care 42(2):248–257. https://doi.org/10.2337/dc18-1507
Wakasugi H, Funakoshi A, Iguchi H (1998) Clinical assessment of pancreatic diabetes caused by chronic pancreatitis. J Gastroenterol 33(2):254–259. https://doi.org/10.1007/s005350050079
CAS
Article
PubMed
Google Scholar
Malka D, Hammel P, Sauvanet A et al (2000) Risk factors for diabetes mellitus in chronic pancreatitis. Gastroenterology 119(5):1324–1332. https://doi.org/10.1053/gast.2000.19286
Howes N, Lerch MM, Greenhalf W et al (2004) Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol 2(3):252–261. https://doi.org/10.1016/S1542-3565(04)00013-8
Das SL, Singh PP, Phillips AR, Murphy R, Windsor JA, Petrov MS (2014) Newly diagnosed diabetes mellitus after acute pancreatitis: a systematic review and meta-analysis. Gut 63(5):818–831. https://doi.org/10.1136/gutjnl-2013-305062
Article
PubMed
Google Scholar
Whitcomb DC (2013) Genetic risk factors for pancreatic disorders. Gastroenterology 144(6):1292–1302. https://doi.org/10.1053/j.gastro.2013.01.069
CAS
Article
PubMed
Google Scholar
Ewald N, Bretzel RG (2013) Diabetes mellitus secondary to pancreatic diseases (type 3c) – are we neglecting an important disease? European Eur J Intern Med 24(3):203–206. https://doi.org/10.1016/j.ejim.2012.12.017
Knop FK, Vilsboll T, Larsen S et al (2007) Increased postprandial responses of GLP-1 and GIP in patients with chronic pancreatitis and steatorrhea following pancreatic enzyme substitution. Am J Physiol Endocrinol Metab 292(1):E324–E330. https://doi.org/10.1152/ajpendo.00059.2006
CAS
Article
PubMed
Google Scholar
Moran A, Dunitz J, Nathan B, Saeed A, Holme B, Thomas W (2009) Cystic fibrosis-related diabetes: current trends in prevalence, incidence, and mortality. Diabetes Care 32(9):1626–1631. https://doi.org/10.2337/dc09-0586
Article
PubMed
PubMed Central
Google Scholar
Elborn JS (2016) Cystic fibrosis. Lancet 388(10059):2519–2531. https://doi.org/10.1016/S0140-6736(16)00576-6
CAS
Article
PubMed
Google Scholar
Andersen DH (1958) Cystic fibrosis of the pancreas. J Chronic Dis 7(1):58–90. https://doi.org/10.1016/0021-9681(58)90185-1
CAS
Article
PubMed
Google Scholar
Singh VK, Schwarzenberg SJ (2017) Pancreatic insufficiency in cystic fibrosis. J Cyst Fibros 16(Suppl 2):S70–S78. https://doi.org/10.1016/j.jcf.2017.06.011
Article
PubMed
Google Scholar
Durno C, Corey M, Zielenski J, Tullis E, Tsui LC, Durie P (2002) Genotype and phenotype correlations in patients with cystic fibrosis and pancreatitis. Gastroenterology 123(6):1857–1864. https://doi.org/10.1053/gast.2002.37042
Article
PubMed
Google Scholar
Perano SJ, Couper JJ, Horowitz M et al (2014) Pancreatic enzyme supplementation improves the incretin hormone response and attenuates postprandial glycemia in adolescents with cystic fibrosis: a randomized crossover trial. J Clin Endocrinol Metab 99(7):2486–2493. https://doi.org/10.1210/jc.2013-4417
Lewis C, Blackman SM, Nelson A et al (2015) Diabetes-related mortality in adults with cystic fibrosis. Role of genotype and sex. Am J Respir Crit Care Med 191(2):194–200. https://doi.org/10.1164/rccm.201403-0576OC
Brodsky J, Dougherty S, Makani R, Rubenstein RC, Kelly A (2011) Elevation of 1-hour plasma glucose during oral glucose tolerance testing is associated with worse pulmonary function in cystic fibrosis. Diabetes Care 34(2):292–295. https://doi.org/10.2337/dc10-1604
CAS
Article
PubMed
PubMed Central
Google Scholar
Bismuth E, Laborde K, Taupin P et al (2008) Glucose tolerance and insulin secretion, morbidity, and death in patients with cystic fibrosis. J Pediatr 152(4):540–545, 545. https://doi.org/10.1016/j.jpeds.2007.09.025
Kawa S, Maruyama M, Watanabe T (2013) Prognosis and long term outcomes of autoimmune pancreatitis. Available from www.pancreapedia.org/reviews/prognosis-and-long-term-outcomes-of-autoimmune-pancreatitis. Accessed 17 May 2020
Smyk DS, Rigopoulou EI, Koutsoumpas AL, Kriese S, Burroughs AK, Bogdanos DP (2012) Autoantibodies in autoimmune pancreatitis. Int J Rheumatol 2012:940831–940838. https://doi.org/10.1155/2012/940831
CAS
Article
PubMed
PubMed Central
Google Scholar
Matsubayashi H, Ishiwatari H, Imai K et al (2019) Steroid therapy and steroid response in autoimmune pancreatitis. Int J Mol Sci 21(1):E257. https://doi.org/10.3390/ijms21010257
Tanaka S, Kobayashi T, Nakanishi K et al (2000) Corticosteroid-responsive diabetes mellitus associated with autoimmune pancreatitis. Lancet 356(9233):910–911. https://doi.org/10.1016/S0140-6736(00)02684-2
Johansson BB, Fjeld K, El Jellas K et al (2018) The role of the carboxyl ester lipase (CEL) gene in pancreatic disease. Pancreatology 18(1):12–19. https://doi.org/10.1016/j.pan.2017.12.001
CAS
Article
PubMed
Google Scholar
Raeder H, McAllister FE, Tjora E et al (2014) Carboxyl-ester lipase maturity-onset diabetes of the young is associated with development of pancreatic cysts and upregulated MAPK signaling in secretin-stimulated duodenal fluid. Diabetes 63(1):259–269. https://doi.org/10.2337/db13-1012
CAS
Article
PubMed
Google Scholar
Raeder H, Vesterhus M, El Ouaamari A et al (2013) Absence of diabetes and pancreatic exocrine dysfunction in a transgenic model of carboxyl-ester lipase-MODY (maturity-onset diabetes of the young). PLoS One 8(4):e60229. https://doi.org/10.1371/journal.pone.0060229
CAS
Article
PubMed
PubMed Central
Google Scholar
Wright NM, Metzger DL, Borowitz SM, Clarke WL (1993) Permanent neonatal diabetes mellitus and pancreatic exocrine insufficiency resulting from congenital pancreatic agenesis. Am J Dis Child 147(6):607–609. https://doi.org/10.1001/archpedi.1993.02160300013005
CAS
Article
PubMed
Google Scholar
Tjora E, Wathle G, Erchinger F et al (2013) Exocrine pancreatic function in hepatocyte nuclear factor 1β-maturity-onset diabetes of the young (HNF1B-MODY) is only moderately reduced: compensatory hypersecretion from a hypoplastic pancreas. Diabet Med 30(8):946–955. https://doi.org/10.1111/dme.12190
Andersen DK, Korc M, Petersen GM et al (2017) Diabetes, pancreatogenic diabetes, and pancreatic cancer. Diabetes 66(5):1103–1110. https://doi.org/10.2337/db16-1477
Dybala MP, Kuznetsov A, Motobu M et al (2020) Integrated pancreatic blood flow: bi-directional microcirculation between endocrine and exocrine pancreas. Diabetes 69(7):1439–1450. https://doi.org/10.2337/db19-1034
Chung KM, Singh J, Lawres L et al (2020) Endocrine-exocrine signaling drives obesity-associated pancreatic ductal adenocarcinoma. Cell 181(4):832–847.e18. https://doi.org/10.1016/j.cell.2020.03.062
Aggarwal G, Kamada P, Chari ST (2013) Prevalence of diabetes mellitus in pancreatic cancer compared to common cancers. Pancreas 42(2):198–201. https://doi.org/10.1097/MPA.0b013e3182592c96
Article
PubMed
PubMed Central
Google Scholar
Nyboe Andersen B, Krarup T, Thorsgaard Pedersen NT, Faber OK, Hagen C, Worning H (1982) B cell function in patients with chronic pancreatitis and its relation to exocrine pancreatic function. Diabetologia 23(2):86–89
Domschke S, Stock KP, Pichl J, Schneider MU, Domschke W (1985) Beta-cell reserve capacity in chronic pancreatitis. Hepatogastroenterology 32(1):27–30
CAS
PubMed
Google Scholar
Sheikh S, Gudipaty L, De Leon DD et al (2017) Reduced beta-cell secretory capacity in pancreatic-insufficient, but not pancreatic-sufficient, cystic fibrosis despite normal glucose tolerance. Diabetes 66(1):134–144. https://doi.org/10.2337/db16-0394
CAS
Article
PubMed
Google Scholar
Lundberg R, Beilman GJ, Dunn TB et al (2016) Early alterations in glycemic control and pancreatic endocrine function in nondiabetic patients with chronic pancreatitis. Pancreas 45(4):565–571. https://doi.org/10.1097/MPA.0000000000000491
Moran A, Diem P, Klein DJ, Levitt MD, Robertson RP (1991) Pancreatic endocrine function in cystic fibrosis. J Pediatr 118(5):715–723. https://doi.org/10.1016/S0022-3476(05)80032-0
CAS
Article
PubMed
Google Scholar
Yi Y, Norris AW, Wang K et al (2016) Abnormal glucose tolerance in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 194(8):974–980. https://doi.org/10.1164/rccm.201512-2518OC
Nyirjesy SC, Sheikh S, Hadjiliadis D et al (2018) Beta-cell secretory defects are present in pancreatic insufficient cystic fibrosis with 1-hour oral glucose tolerance test glucose ≥155 mg/dL. Pediatr Diabetes 19(7):1173–1182. https://doi.org/10.1111/pedi.12700
Meier JJ, Giese A (2015) Diabetes associated with pancreatic diseases. Curr Opin Gastroenterol 31(5):400–406. https://doi.org/10.1097/MOG.0000000000000199
CAS
Article
PubMed
Google Scholar
Norris AW, Ode KL, Merjaneh L et al (2019) Survival in a bad neighborhood: pancreatic islets in cystic fibrosis. J Endocrinol 241(1):R35–R50. https://doi.org/10.1530/JOE-18-0468
Iannucci A, Mukai K, Johnson D, Burke B (1984) Endocrine pancreas in cystic fibrosis: an immunohistochemical study. Hum Pathol 15(3):278–284. https://doi.org/10.1016/S0046-8177(84)80191-4
CAS
Article
PubMed
Google Scholar
Yi Y, Sun X, Gibson-Corley K et al (2016) A transient metabolic recovery from early life glucose intolerance in cystic fibrosis ferrets occurs during pancreatic remodeling. Endocrinology 157(5):1852–1865. https://doi.org/10.1210/en.2015-1935
Edlund A, Esguerra JL, Wendt A, Flodstrom-Tullberg M, Eliasson L (2014) CFTR and Anoctamin 1 (ANO1) contribute to cAMP amplified exocytosis and insulin secretion in human and murine pancreatic beta-cells. BMC Med 12(1):87. https://doi.org/10.1186/1741-7015-12-87
CAS
Article
PubMed
PubMed Central
Google Scholar
Guo JH, Chen H, Ruan YC et al (2014) Glucose-induced electrical activities and insulin secretion in pancreatic islet beta-cells are modulated by CFTR. Nat Commun 5(1):4420. https://doi.org/10.1038/ncomms5420
Ntimbane T, Mailhot G, Spahis S et al (2016) CFTR silencing in pancreatic beta-cells reveals a functional impact on glucose-stimulated insulin secretion and oxidative stress response. Am J Physiol Endocrinol Metab 310(3):E200–E212. https://doi.org/10.1152/ajpendo.00333.2015
Hart NJ, Aramandla R, Poffenberger G et al (2018) Cystic fibrosis-related diabetes is caused by islet loss and inflammation. JCI Insight 3(8):e98240. https://doi.org/10.1172/jci.insight.98240
Sun X, Yi Y, Xie W et al (2017) CFTR influences beta cell function and insulin secretion through non-cell autonomous exocrine-derived factors. Endocrinology 158(10):3325–3338. https://doi.org/10.1210/en.2017-00187
White MG, Maheshwari RR, Anderson SJ et al (2019) In situ analysis reveals that CFTR is expressed in only a small minority of beta-cells in normal adult human pancreas. J Clin Endocrinol Metab 105(5):dgz209–dg1374. https://doi.org/10.1210/clinem/dgz209
Shik Mun K, Arora K, Huang Y et al (2019) Patient-derived pancreas-on-a-chip to model cystic fibrosis-related disorders. Nat Commun 10(1):3124. https://doi.org/10.1038/s41467-019-11178-w
Rafaeloff R, Pittenger GL, Barlow SW et al (1997) Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters. J Clin Invest 99(9):2100–2109. https://doi.org/10.1172/JCI119383
Donowitz M, Hendler R, Spiro HM, Binder HJ, Felig P (1975) Glucagon secretion in acute and chronic pancreatitis. Ann Intern Med 83(6):778–781. https://doi.org/10.7326/0003-4819-83-6-778
CAS
Article
PubMed
Google Scholar
Larsen S, Hilsted J, Tronier B, Worning H (1988) Pancreatic hormone secretion in chronic pancreatitis without residual beta-cell function. Acta Endocrinol 118(3):357–364. https://doi.org/10.1530/acta.0.1180357
CAS
Article
Google Scholar
Aitken ML, Szkudlinska MA, Boyko EJ, Ng D, Utzschneider KM, Kahn SE (2020) Impaired counterregulatory responses to hypoglycaemia following oral glucose in adults with cystic fibrosis. Diabetologia 63(5):1055–1065. https://doi.org/10.1007/s00125-020-05096-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Klöppel G, Bommer G, Commandeur G, Heitz P (1978) The endocrine pancreas in chronic–pancreatitis. Immunocytochemical and ultrastructural studies. Virchows Arch A Pathol Anat Histol 377(2):157–174. https://doi.org/10.1007/BF00427003
Knop FK, Vilsboll T, Larsen S, Madsbad S, Holst JJ, Krarup T (2010) Glucagon suppression during OGTT worsens while suppression during IVGTT sustains alongside development of glucose intolerance in patients with chronic pancreatitis. Regul Pept 164(2–3):144–150. https://doi.org/10.1016/j.regpep.2010.05.011
CAS
Article
PubMed
Google Scholar
Lanng S, Thorsteinsson B, Roder ME et al (1993) Pancreas and gut hormone responses to oral glucose and intravenous glucagon in cystic fibrosis patients with normal, impaired, and diabetic glucose tolerance. Acta Endocrinol 128(3):207–214. https://doi.org/10.1530/acta.0.1280207
CAS
Article
Google Scholar
Kelly A, De Leon DD, Sheikh S et al (2019) Islet hormone and incretin secretion in cystic fibrosis after four months of ivacaftor therapy. Am J Respir Crit Care Med 199(3):342–351. https://doi.org/10.1164/rccm.201806-1018OC
CAS
Article
PubMed
PubMed Central
Google Scholar
Norris AW (2019) Is cystic fibrosis-related diabetes reversible? New data on CFTR potentiation and insulin secretion. Am J Respir Crit Care Med 199(3):261–263. https://doi.org/10.1164/rccm.201808-1501ED
CAS
Article
PubMed
PubMed Central
Google Scholar
Sive A, Vinik AI, Van Tonder S, Lund A (1978) Impaired pancreatic polypeptide secretion in chronicpancreatitis. J Clin Endocrinol Metab 47(3):556–559. https://doi.org/10.1210/jcem-47-3-556
Valenzuela JE, Taylor IL, Walsh JH (1979) Pancreatic polypeptide response in patients with chronic pancreatitis. Dig Dis Sci 24(11):862–864. https://doi.org/10.1007/BF01324903
CAS
Article
PubMed
Google Scholar
Nousia-Arvanitakis S, Tomita T, Desai N, Kimmel JR (1985) Pancreatic polypeptide in cystic fibrosis. Arch Pathol Lab Med 109(8):722–726
CAS
PubMed
Google Scholar
Uc A, Olivier AK, Griffin MA et al (2015) Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass. Clin Sci (Lond) 128(2):131–142. https://doi.org/10.1042/CS20140059
Sun J, Ni Q, Xie J et al (2019) Beta-cell dedifferentiation in patients with T2D with adequate glucose control and nondiabetic chronic pancreatitis. J Clin Endocrinol Metab 104(1):83–94. https://doi.org/10.1210/jc.2018-00968
Hull RL, Gibson RL, McNamara S et al (2018) Islet interleukin-1β immunoreactivity is an early feature of cystic fibrosis that may contribute to β-cell failure. Diabetes Care 41(4):823–830. https://doi.org/10.2337/dc17-1387
Bogdani M, Blackman SM, Ridaura C, Bellocq JP, Powers AC, Aguilar-Bryan L (2017) Structural abnormalities in islets from very young children with cystic fibrosis may contribute to cystic fibrosis-related diabetes. Sci Rep 7(1):17231. https://doi.org/10.1038/s41598-017-17404-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Eguchi K, Nagai R (2017) Islet inflammation in type 2 diabetes and physiology. J Clin Invest 127(1):14–23. https://doi.org/10.1172/JCI88877
Article
PubMed
PubMed Central
Google Scholar
Xiao X, Gaffar I, Guo P et al (2014) M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci U S A 111(13):E1211–E1220. https://doi.org/10.1073/pnas.1321347111
Brissova M, Aamodt K, Brahmachary P et al (2014) Islet microenvironment, modulated by vascular endothelial growth factor-a signaling, promotes beta cell regeneration. Cell Metab 19(3):498–511. https://doi.org/10.1016/j.cmet.2014.02.001
Tessem JS, Jensen JN, Pelli H et al (2008) Critical roles for macrophages in islet angiogenesis and maintenance during pancreatic degeneration. Diabetes 57(6):1605–1617. https://doi.org/10.2337/db07-1577
Laferrere B, Pattou F (2018) Weight-independent mechanisms of glucose control after roux-en-Y gastric bypass. Front Endocrinol (Lausanne) 9:530. https://doi.org/10.3389/fendo.2018.00530
Article
Google Scholar
Javeed N, Sagar G, Dutta SK et al (2015) Pancreatic cancer-derived exosomes cause paraneoplastic beta-cell dysfunction. Clin Cancer Res 21(7):1722–1733. https://doi.org/10.1158/1078-0432.CCR-14-2022
Wang Y, Ni Q, Sun J et al (2019) Paraneoplastic β cell dedifferentiation in nondiabetic patients with pancreatic cancer. J Clin Endocrinol Metab 105(4):e1489–e1503. https://doi.org/10.1210/clinem/dgz224
Sharma A, Smyrk TC, Levy MJ, Topazian MA, Chari ST (2018) Fasting blood glucose levels provide estimate of duration and progression of pancreatic cancer before diagnosis. Gastroenterology 155(2):490–500 e492. https://doi.org/10.1053/j.gastro.2018.04.025
CAS
Article
PubMed
Google Scholar
Maitra A, Sharma A, Brand RE et al (2018) A prospective study to establish a new-onset diabetes cohort: from the consortium for the study of chronic pancreatitis, diabetes, and pancreatic cancer. Pancreas 47(10):1244–1248. https://doi.org/10.1097/MPA.0000000000001169