Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK (2009) American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 41(2):459–471. https://doi.org/10.1249/MSS.0b013e3181949333
Article
PubMed
Google Scholar
Hashida R, Kawaguchi T, Bekki M et al (2017) Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. J Hepatol 66(1):142–152. https://doi.org/10.1016/j.jhep.2016.08.023
Article
PubMed
Google Scholar
Katzmarzyk PT (2010) Physical activity, sedentary behavior, and health: paradigm paralysis or paradigm shift? Diabetes 59(11):2717–2725. https://doi.org/10.2337/db10-0822
CAS
Article
PubMed
PubMed Central
Google Scholar
Hodson L, Karpe F (2019) Hyperinsulinemia: does it tip the balance toward intrahepatic fat accumulation? Endocr Connect 8(10):R157–R168. https://doi.org/10.1530/EC-19-0350
CAS
Article
PubMed
PubMed Central
Google Scholar
Meex RCR, Blaak EE, van Loon LJC (2019) Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obes Rev 20(9):1205–1217. https://doi.org/10.1111/obr.12862
CAS
Article
PubMed
PubMed Central
Google Scholar
Smith GI, Shankaran M, Yoshino M et al (2019) Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J Clin Invest 130(3):1453–1460. https://doi.org/10.1172/JCI134165
Article
Google Scholar
Goodpaster BH, Sparks LM (2017) Metabolic flexibility in health and disease. Cell Metab 25(5):1027–1036. https://doi.org/10.1016/j.cmet.2017.04.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98(4):2133–2223. https://doi.org/10.1152/physrev.00063.2017
CAS
Article
PubMed
PubMed Central
Google Scholar
Iozzo P (2009) Viewpoints on the way to the consensus session: where does insulin resistance start? The adipose tissue. Diabetes Care 32(Suppl 2):S168–S173. https://doi.org/10.2337/dc09-S304
CAS
Article
PubMed
PubMed Central
Google Scholar
Templeman NM, Skovso S, Page MM, Lim GE, Johnson JD (2017) A causal role for hyperinsulinemia in obesity. J Endocrinol 232(3):R173–R183. https://doi.org/10.1530/JOE-16-0449
CAS
Article
PubMed
Google Scholar
Thyfault JP, Krogh-Madsen R (2011) Metabolic disruptions induced by reduced ambulatory activity in free-living humans. J Appl Physiol 111(4):1218–1224. https://doi.org/10.1152/japplphysiol.00478.2011
CAS
Article
PubMed
Google Scholar
Bergouignan A, Rudwill F, Simon C, Blanc S (2011) Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies. J Appl Physiol 111(4):1201–1210. https://doi.org/10.1152/japplphysiol.00698.2011
CAS
Article
PubMed
Google Scholar
Laaksonen DE, Lindstrom J, Lakka TA et al (2005) Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study. Diabetes 54(1):158–165. https://doi.org/10.2337/diabetes.54.1.158
CAS
Article
PubMed
Google Scholar
Fretts AM, Howard BV, McKnight B et al (2012) Modest levels of physical activity are associated with a lower incidence of diabetes in a population with a high rate of obesity: the strong heart family study. Diabetes Care 35(8):1743–1745. https://doi.org/10.2337/dc11-2321
Article
PubMed
PubMed Central
Google Scholar
Tudor-Locke C, Schuna JM Jr (2012) Steps to preventing type 2 diabetes: exercise, walk more, or sit less? Front Endocrinol (Lausanne) 3:142. https://doi.org/10.3389/fendo.2012.00142
Article
Google Scholar
Williams PT (2007) Changes in vigorous physical activity and incident diabetes in male runners. Diabetes Care 30(11):2838–2842. https://doi.org/10.2337/dc07-1189
Article
PubMed
Google Scholar
Wang Y, Lee DC, Brellenthin AG et al (2019) Leisure-time running reduces the risk of incident type 2 diabetes. Am J Med 132(10):1225–1232. https://doi.org/10.1016/j.amjmed.2019.04.035
Article
PubMed
Google Scholar
Lee DC, Sui X, Church TS, Lee IM, Blair SN (2009) Associations of cardiorespiratory fitness and obesity with risks of impaired fasting glucose and type 2 diabetes in men. Diabetes Care 32(2):257–262. https://doi.org/10.2337/dc08-1377
Article
PubMed
PubMed Central
Google Scholar
Thyfault JP, Rector RS (2020) Exercise combats hepatic steatosis: potential mechanisms and clinical implications. Diabetes 69(4):517–524. https://doi.org/10.2337/dbi18-0043
CAS
Article
PubMed
Google Scholar
Church TS, Kuk JL, Ross R, Priest EL, Biltoft E, Blair SN (2006) Association of cardiorespiratory fitness, body mass index, and waist circumference to nonalcoholic fatty liver disease. Gastroenterology 130(7):2023–2030. https://doi.org/10.1053/j.gastro.2006.03.019
CAS
Article
PubMed
Google Scholar
Palve KS, Pahkala K, Suomela E et al (2017) Cardiorespiratory fitness and risk of fatty liver: the Young Finns Study. Med Sci Sports Exerc 49(9):1834–1841. https://doi.org/10.1249/MSS.0000000000001288
Article
PubMed
Google Scholar
Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG (2017) Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Physiol Rev 97(4):1351–1402. https://doi.org/10.1152/physrev.00019.2016
Article
PubMed
PubMed Central
Google Scholar
Deshmukh AS, Cox J, Jensen LJ, Meissner F, Mann M (2015) Secretome analysis of lipid-induced insulin resistance in skeletal muscle cells by a combined experimental and bioinformatics workflow. J Proteome Res 14(11):4885–4895. https://doi.org/10.1021/acs.jproteome.5b00720
CAS
Article
PubMed
Google Scholar
Meex RC, Hoy AJ, Morris A et al (2015) Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism. Cell Metab 22(6):1078–1089. https://doi.org/10.1016/j.cmet.2015.09.023
CAS
Article
PubMed
Google Scholar
Crowe S, Wu LE, Economou C et al (2009) Pigment epithelium-derived factor contributes to insulin resistance in obesity. Cell Metab 10(1):40–47. https://doi.org/10.1016/j.cmet.2009.06.001
CAS
Article
PubMed
Google Scholar
Laurens C, Bergouignan A, Moro C (2020) Exercise-released myokines in the control of energy metabolism. Front Physiol 11:91. https://doi.org/10.3389/fphys.2020.00091
Article
PubMed
PubMed Central
Google Scholar
Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17(2):162–184. https://doi.org/10.1016/j.cmet.2012.12.012
CAS
Article
PubMed
Google Scholar
Bergouignan A, Latouche C, Heywood S et al (2016) Frequent interruptions of sedentary time modulates contraction- and insulin-stimulated glucose uptake pathways in muscle: ancillary analysis from randomized clinical trials. Sci Rep 6(1):32044. https://doi.org/10.1038/srep32044
CAS
Article
PubMed
PubMed Central
Google Scholar
Thyfault JP (2008) Setting the stage: possible mechanisms by which acute contraction restores insulin sensitivity in muscle. Am J Physiol Regul Integr Comp Physiol 294(4):R1103–R1110. https://doi.org/10.1152/ajpregu.00542.2007
CAS
Article
PubMed
Google Scholar
Yan Z, Okutsu M, Akhtar YN, Lira VA (2011) Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol (1985) 110(1):264–274. https://doi.org/10.1152/japplphysiol.00993.2010
CAS
Article
Google Scholar
Kim Y, Triolo M, Hood DA (2017) Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxidative Med Cell Longev 2017:3165396–3165316. https://doi.org/10.1155/2017/3165396
CAS
Article
Google Scholar
Parousis A, Carter HN, Tran C et al (2018) Contractile activity attenuates autophagy suppression and reverses mitochondrial defects in skeletal muscle cells. Autophagy 14(11):1886–1897. https://doi.org/10.1080/15548627.2018.1491488
CAS
Article
PubMed
PubMed Central
Google Scholar
Lefai E, Blanc S, Momken I et al (2017) Exercise training improves fat metabolism independent of total energy expenditure in sedentary overweight men, but does not restore lean metabolic phenotype. Int J Obes 41(12):1728–1736. https://doi.org/10.1038/ijo.2017.151
CAS
Article
Google Scholar
Badin PM, Langin D, Moro C (2013) Dynamics of skeletal muscle lipid pools. Trends Endocrinol Metab 24(12):607–615. https://doi.org/10.1016/j.tem.2013.08.001
CAS
Article
PubMed
Google Scholar
Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8(8):457–465. https://doi.org/10.1038/nrendo.2012.49
CAS
Article
PubMed
Google Scholar
Lee JH, Jun HS (2019) Role of myokines in regulating skeletal muscle mass and function. Front Physiol 10:42. https://doi.org/10.3389/fphys.2019.00042
Article
PubMed
PubMed Central
Google Scholar
Piccirillo R (2019) Exercise-induced myokines with therapeutic potential for muscle wasting. Front Physiol 10:287. https://doi.org/10.3389/fphys.2019.00287
Article
PubMed
PubMed Central
Google Scholar
Pedersen BK, Steensberg A, Fischer C et al (2003) Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 24(2–3):113–119. https://doi.org/10.1023/A:1026070911202
CAS
Article
PubMed
Google Scholar
Suzuki K, Nakaji S, Yamada M, Totsuka M, Sato K, Sugawara K (2002) Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev 8:6–48
PubMed
Google Scholar
Keller C, Steensberg A, Pilegaard H et al (2001) Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J 15(14):2748–2750. https://doi.org/10.1096/fj.01-0507fje
CAS
Article
PubMed
Google Scholar
Febbraio MA, Steensberg A, Keller C et al (2003) Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol 549(Pt 2):607–612. https://doi.org/10.1113/jphysiol.2003.042374
CAS
Article
PubMed
PubMed Central
Google Scholar
Wolsk E, Mygind H, Grondahl TS, Pedersen BK, van Hall G (2010) IL-6 selectively stimulates fat metabolism in human skeletal muscle. Am J Physiol Endocrinol Metab 299(5):E832–E840. https://doi.org/10.1152/ajpendo.00328.2010
CAS
Article
PubMed
Google Scholar
Carey AL, Steinberg GR, Macaulay SL et al (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55(10):2688–2697. https://doi.org/10.2337/db05-1404
CAS
Article
PubMed
Google Scholar
Wasserman DH (2009) Four grams of glucose. Am J Physiol Endocrinol Metab 296(1):E11–E21. https://doi.org/10.1152/ajpendo.90563.2008
CAS
Article
PubMed
Google Scholar
Trefts E, Williams AS, Wasserman DH (2015) Exercise and the regulation of hepatic metabolism. Prog Mol Biol Transl Sci 135:203–225. https://doi.org/10.1016/bs.pmbts.2015.07.010
CAS
Article
PubMed
PubMed Central
Google Scholar
Hu C, Hoene M, Plomgaard P et al (2019) Muscle-liver substrate fluxes in exercising humans and potential effects on hepatic metabolism. J Clin Endocrinol Metab 105(4):1196–1209. https://doi.org/10.1210/clinem/dgz266
Article
PubMed Central
Google Scholar
Rector RS, Thyfault JP, Morris RT et al (2008) Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol 294(3):G619–G626. https://doi.org/10.1152/ajpgi.00428.2007
CAS
Article
PubMed
Google Scholar
Linden MA, Fletcher JA, Morris EM et al (2015) Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training. Med Sci Sports Exerc 47(3):556–567. https://doi.org/10.1249/MSS.0000000000000430
CAS
Article
PubMed
PubMed Central
Google Scholar
Rector RS, Uptergrove GM, Morris EM et al (2011) Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. Am J Physiol Gastrointest Liver Physiol 300(5):G874–G883. https://doi.org/10.1152/ajpgi.00510.2010
CAS
Article
PubMed
PubMed Central
Google Scholar
Puchalska P, Crawford PA (2017) Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab 25(2):262–284. https://doi.org/10.1016/j.cmet.2016.12.022
CAS
Article
PubMed
PubMed Central
Google Scholar
Karstoft K, Pedersen BK (2016) Skeletal muscle as a gene regulatory endocrine organ. Curr Opin Clin Nutr Metab Care 19(4):270–275. https://doi.org/10.1097/MCO.0000000000000283
CAS
Article
PubMed
Google Scholar
Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW (2012) Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem 287(15):11968–11980. https://doi.org/10.1074/jbc.M111.336834
CAS
Article
PubMed
PubMed Central
Google Scholar
Ingerslev B, Hansen JS, Hoffmann C et al (2017) Angiopoietin-like protein 4 is an exercise-induced hepatokine in humans, regulated by glucagon and cAMP. Mol Metab 6(10):1286–1295. https://doi.org/10.1016/j.molmet.2017.06.018
CAS
Article
PubMed
PubMed Central
Google Scholar
Horowitz JF (2003) Fatty acid mobilization from adipose tissue during exercise. Trends Endocrinol Metab 14(8):386–392. https://doi.org/10.1016/S1043-2760(03)00143-7
CAS
Article
PubMed
Google Scholar
Lafontan M, Sengenes C, Galitzky J et al (2000) Recent developments on lipolysis regulation in humans and discovery of a new lipolytic pathway. Int J Obes Relat Metab Disord 24(Suppl 4):S47–S52. https://doi.org/10.1038/sj.ijo.0801505
CAS
Article
PubMed
Google Scholar
Stanford KI, Goodyear LJ (2016) Exercise regulation of adipose tissue. Adipocyte 5(2):153–162. https://doi.org/10.1080/21623945.2016.1191307
CAS
Article
PubMed
PubMed Central
Google Scholar
Moro C, Pillard F, de Glisezinski I et al (2007) Sex differences in lipolysis-regulating mechanisms in overweight subjects: effect of exercise intensity. Obesity (Silver Spring) 15(9):2245–2255. https://doi.org/10.1038/oby.2007.267
CAS
Article
Google Scholar
Richterova B, Stich V, Moro C et al (2004) Effect of endurance training on adrenergic control of lipolysis in adipose tissue of obese women. J Clin Endocrinol Metab 89(3):1325–1331. https://doi.org/10.1210/jc.2003-031001
CAS
Article
PubMed
Google Scholar
Sutherland LN, Bomhof MR, Capozzi LC, Basaraba SA, Wright DC (2009) Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue. J Physiol 587(Pt 7):1607–1617. https://doi.org/10.1113/jphysiol.2008.165464
CAS
Article
PubMed
PubMed Central
Google Scholar
Trevellin E, Scorzeto M, Olivieri M et al (2014) Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes 63(8):2800–2811. https://doi.org/10.2337/db13-1234
CAS
Article
PubMed
Google Scholar
Moro C, Pillard F, de Glisezinski I et al (2008) Exercise-induced lipid mobilization in subcutaneous adipose tissue is mainly related to natriuretic peptides in overweight men. Am J Physiol Endocrinol Metab 295(2):E505–E513. https://doi.org/10.1152/ajpendo.90227.2008
CAS
Article
PubMed
Google Scholar
Perreault L, Lavely JM, Kittelson JM, Horton TJ (2004) Gender differences in lipoprotein lipase activity after acute exercise. Obes Res 12(2):241–249. https://doi.org/10.1038/oby.2004.31
CAS
Article
PubMed
Google Scholar
Lithell H, Schele R, Vessby B, Jacobs I (1984) Lipoproteins, lipoprotein lipase, and glycogen after prolonged physical activity. J Appl Physiol Respir Environ Exerc Physiol 57(3):698–702. https://doi.org/10.1152/jappl.1984.57.3.698
CAS
Article
PubMed
Google Scholar
Malkova D, Evans RD, Frayn KN, Humphreys SM, Jones PR, Hardman AE (2000) Prior exercise and postprandial substrate extraction across the human leg. Am J Physiol Endocrinol Metab 279(5):E1020–E1028. https://doi.org/10.1152/ajpendo.2000.279.5.E1020
CAS
Article
PubMed
Google Scholar
Wilmore JH, Despres JP, Stanforth PR et al (1999) Alterations in body weight and composition consequent to 20 wk of endurance training: the HERITAGE Family Study. Am J Clin Nutr 70(3):346–352. https://doi.org/10.1093/ajcn/70.3.346
CAS
Article
PubMed
Google Scholar
Mauriege P, Galitzky J, Berlan M, Lafontan M (1987) Heterogeneous distribution of beta and alpha-2 adrenoceptor binding sites in human fat cells from various fat deposits: functional consequences. Eur J Clin Investig 17(2):156–165. https://doi.org/10.1111/j.1365-2362.1987.tb02395.x
CAS
Article
Google Scholar
Ohkawara K, Tanaka S, Miyachi M, Ishikawa-Takata K, Tabata I (2007) A dose-response relation between aerobic exercise and visceral fat reduction: systematic review of clinical trials. Int J Obes 31(12):1786–1797. https://doi.org/10.1038/sj.ijo.0803683
CAS
Article
Google Scholar
Vieira VJ, Valentine RJ, Wilund KR, Antao N, Baynard T, Woods JA (2009) Effects of exercise and low-fat diet on adipose tissue inflammation and metabolic complications in obese mice. Am J Physiol Endocrinol Metab 296(5):E1164–E1171. https://doi.org/10.1152/ajpendo.00054.2009
CAS
Article
PubMed
PubMed Central
Google Scholar
Fisher G, Hyatt TC, Hunter GR, Oster RA, Desmond RA, Gower BA (2011) Effect of diet with and without exercise training on markers of inflammation and fat distribution in overweight women. Obesity (Silver Spring) 19(6):1131–1136. https://doi.org/10.1038/oby.2010.310
CAS
Article
Google Scholar
Wedell-Neergaard AS, Lang Lehrskov L, Christensen RH et al (2019) Exercise-induced changes in visceral adipose tissue mass are regulated by il-6 signaling: a randomized controlled trial. Cell Metab 29(4):844–855 e843. https://doi.org/10.1016/j.cmet.2018.12.007
CAS
Article
PubMed
Google Scholar
Laurens C, Parmar A, Murphy E et al (2020) Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight 5(6). https://doi.org/10.1172/jci.insight.131870
Takahashi H, Alves CRR, Stanford KI et al (2019) TGF-beta2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat Metab 1(2):291–303. https://doi.org/10.1038/s42255-018-0030-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Curran M, Drayson MT, Andrews RC et al (2020) The benefits of physical exercise for the health of the pancreatic beta-cell: a review of the evidence. Exp Physiol 105(4):579–589. https://doi.org/10.1113/EP088220
Article
PubMed
Google Scholar
Heath GW, Gavin JR 3rd, Hinderliter JM, Hagberg JM, Bloomfield SA, Holloszy JO (1983) Effects of exercise and lack of exercise on glucose tolerance and insulin sensitivity. J Appl Physiol 55(2):512–517. https://doi.org/10.1152/jappl.1983.55.2.512
CAS
Article
PubMed
Google Scholar
Kahn SE, Prigeon RL, McCulloch DK et al (1993) Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 42(11):1663–1672. https://doi.org/10.2337/diab.42.11.1663
CAS
Article
PubMed
Google Scholar
Bergman RN, Phillips LS, Cobelli C (1981) Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest 68(6):1456–1467. https://doi.org/10.1172/JCI110398
CAS
Article
PubMed
PubMed Central
Google Scholar
Solomon TP, Haus JM, Kelly KR, Rocco M, Kashyap SR, Kirwan JP (2010) Improved pancreatic beta-cell function in type 2 diabetic patients after lifestyle-induced weight loss is related to glucose-dependent insulinotropic polypeptide. Diabetes Care 33(7):1561–1566. https://doi.org/10.2337/dc09-2021
CAS
Article
PubMed
PubMed Central
Google Scholar
Solomon TP, Malin SK, Karstoft K, Kashyap SR, Haus JM, Kirwan JP (2013) Pancreatic beta-cell function is a stronger predictor of changes in glycemic control after an aerobic exercise intervention than insulin sensitivity. J Clin Endocrinol Metab 98(10):4176–4186. https://doi.org/10.1210/jc.2013-2232
CAS
Article
PubMed
PubMed Central
Google Scholar
Christensen CS, Christensen DP, Lundh M et al (2015) Skeletal muscle to pancreatic beta-cell cross-talk: the effect of humoral mediators liberated by muscle contraction and acute exercise on beta-cell apoptosis. J Clin Endocrinol Metab 100(10):E1289–E1298. https://doi.org/10.1210/jc.2014-4506
CAS
Article
PubMed
Google Scholar
Natalicchio A, Marrano N, Biondi G et al (2017) The myokine irisin is released in response to saturated fatty acids and promotes pancreatic beta-cell survival and insulin secretion. Diabetes 66(11):2849–2856. https://doi.org/10.2337/db17-0002
CAS
Article
PubMed
Google Scholar
Wagenmakers AJ, Strauss JA, Shepherd SO, Keske MA, Cocks M (2016) Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing. J Physiol 594(8):2207–2222. https://doi.org/10.1113/jphysiol.2014.284513
CAS
Article
PubMed
Google Scholar
Olver TD, Ferguson BS, Laughlin MH (2015) Molecular mechanisms for exercise training-induced changes in vascular structure and function: skeletal muscle, cardiac muscle, and the brain. Prog Mol Biol Transl Sci 135:227–257. https://doi.org/10.1016/bs.pmbts.2015.07.017
CAS
Article
PubMed
Google Scholar
Bergman RN (2003) Insulin action and distribution of tissue blood flow. J Clin Endocrinol Metab 88(10):4556–4558. https://doi.org/10.1210/jc.2003-031431
CAS
Article
PubMed
Google Scholar
Eringa EC, Stehouwer CD, Merlijn T, Westerhof N, Sipkema P (2002) Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles. Cardiovasc Res 56(3):464–471. https://doi.org/10.1016/S0008-6363(02)00593-X
CAS
Article
PubMed
Google Scholar
Reynolds LJ, Credeur DP, Manrique C, Padilla J, Fadel PJ, Thyfault JP (2017) Obesity, type 2 diabetes, and impaired insulin-stimulated blood flow: role of skeletal muscle NO synthase and endothelin-1. J Appl Physiol (1985) 122(1):38–47. https://doi.org/10.1152/japplphysiol.00286.2016
CAS
Article
Google Scholar
Solomon TP, Haus JM, Li Y, Kirwan JP (2011) Progressive hyperglycemia across the glucose tolerance continuum in older obese adults is related to skeletal muscle capillarization and nitric oxide bioavailability. J Clin Endocrinol Metab 96(5):1377–1384. https://doi.org/10.1210/jc.2010-2069
CAS
Article
PubMed
PubMed Central
Google Scholar
Frisbee JC (2005) Reduced nitric oxide bioavailability contributes to skeletal muscle microvessel rarefaction in the metabolic syndrome. Am J Physiol Regul Integr Comp Physiol 289(2):R307–R316. https://doi.org/10.1152/ajpregu.00114.2005
CAS
Article
PubMed
Google Scholar
Padilla J, Olver TD, Thyfault JP, Fadel PJ (2015) Role of habitual physical activity in modulating vascular actions of insulin. Exp Physiol 100(7):759–771. https://doi.org/10.1113/EP085107
CAS
Article
PubMed
PubMed Central
Google Scholar
Sjoberg KA, Frosig C, Kjobsted R et al (2017) Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes 66(6):1501–1510. https://doi.org/10.2337/db16-1327
CAS
Article
PubMed
Google Scholar
McConell GK, Sjoberg KA, Ceutz F et al (2020) Insulin-induced membrane permeability to glucose in human muscles at rest and following exercise. J Physiol 598(2):303–315. https://doi.org/10.1113/JP278600
CAS
Article
PubMed
Google Scholar
Rapoport RM, Merkus D (2017) Endothelin-1 regulation of exercise-induced changes in flow: dynamic regulation of vascular tone. Front Pharmacol 8:517. https://doi.org/10.3389/fphar.2017.00517
CAS
Article
PubMed
PubMed Central
Google Scholar
Hagberg CE, Falkevall A, Wang X et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464(7290):917–921. https://doi.org/10.1038/nature08945
CAS
Article
PubMed
Google Scholar
Martin JS, Padilla J, Jenkins NT et al (2012) Functional adaptations in the skeletal muscle microvasculature to endurance and interval sprint training in the type 2 diabetic OLETF rat. J Appl Physiol (1985) 113(8):1223–1232. https://doi.org/10.1152/japplphysiol.00823.2012
Article
Google Scholar
Mikus CR, Rector RS, Arce-Esquivel AA et al (2010) Daily physical activity enhances reactivity to insulin in skeletal muscle arterioles of hyperphagic Otsuka Long-Evans Tokushima Fatty rats. J Appl Physiol 109(4):1203–1210. https://doi.org/10.1152/japplphysiol.00064.2010
CAS
Article
PubMed
PubMed Central
Google Scholar
DeVallance E, Branyan KW, Lemaster KC et al (2019) Exercise training prevents the perivascular adipose tissue-induced aortic dysfunction with metabolic syndrome. Redox Biol 26:101285. https://doi.org/10.1016/j.redox.2019.101285
CAS
Article
PubMed
PubMed Central
Google Scholar