VEGF-A and blood vessels: a beta cell perspective

  • Willem Staels
  • Yves Heremans
  • Harry Heimberg
  • Nico De LeuEmail author


Reciprocal signalling between the endothelium and the pancreatic epithelium is crucial for coordinated differentiation of the embryonic endocrine and exocrine pancreas. In the adult pancreas, islets depend on their dense capillary network to adequately respond to changes in plasma glucose levels. Vascular changes contribute to the onset and progression of both type 1 and type 2 diabetes. Impaired revascularisation of islets transplanted in individuals with type 1 diabetes is linked to islet graft failure and graft loss. This review summarises our understanding of the role of vascular endothelial growth factor-A (VEGF-A) and endothelial cells in beta cell development, physiology and disease. In addition, the therapeutic potential of modulating VEGF-A levels in beta and beta-like cells for transplantation is discussed.


Blood vessels Diabetes Endothelial cells Pancreatic beta cells Review VEGF-A 





Blood outgrowth endothelial cell


Embryonic day


Fibroblast growth factor


Hepatocyte growth factor


Instant blood-mediated inflammatory response


Receptor tyrosine kinase


Vascular endothelial growth factor


Vascular endothelial growth factor receptor



We would like to acknowledge all researchers that contributed to the field. We would also like to thank our colleagues and members of the Beta Cell Neogenesis laboratory. We apologise to scientists whose work could not be highlighted because of space limitations.

Contribution statement

WS and NDL were responsible for drafting the article. All authors revised it critically for important intellectual content. All authors approved the version to be published.


The authors acknowledge support by grants from the Research Foundation Flanders (FWO), the VUB Research Council, Stichting Diabetes Onderzoek Nederland, the European Union Sixth and Seventh Framework Program, the Wetenschappelijk Fonds Willy Gepts (WFWG) of the UZ Brussel and the European Foundation for the Study of Diabetes. WS is supported by a postdoctoral grant from Agence Nationale de la Recherche (Laboratoire d’Excellence Revive, Investissement d’Avenir; ANR-10-LABX-73).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

125_2019_4969_MOESM1_ESM.pptx (286 kb)
Figure slide (PPTX 286 kb)


  1. 1.
    Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611. CrossRefPubMedGoogle Scholar
  2. 2.
    Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176(6):1248–1264. CrossRefPubMedGoogle Scholar
  3. 3.
    Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294(5542):559–563. CrossRefPubMedGoogle Scholar
  4. 4.
    Yamamoto H, Yun EJ, Gerber HP, Ferrara N, Whitsett JA, Vu TH (2007) Epithelial-vascular cross talk mediated by VEGF-A and HGF signaling directs primary septae formation during distal lung morphogenesis. Dev Biol 308(1):44–53. CrossRefPubMedGoogle Scholar
  5. 5.
    Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294(5542):564–567. CrossRefPubMedGoogle Scholar
  6. 6.
    Yoshitomi H, Zaret KS (2004) Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 131(4):807–817. CrossRefPubMedGoogle Scholar
  7. 7.
    Jacquemin P, Yoshitomi H, Kashima Y, Rousseau GG, Lemaigre FP, Zaret KS (2006) An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Dev Biol 290(1):189–199. CrossRefPubMedGoogle Scholar
  8. 8.
    Pierreux CE, Cordi S, Hick AC et al (2010) Epithelial: endothelial cross-talk regulates exocrine differentiation in developing pancreas. Dev Biol 347(1):216–227. CrossRefPubMedGoogle Scholar
  9. 9.
    Magenheim J, Ilovich O, Lazarus A et al (2011) Blood vessels restrain pancreas branching, differentiation and growth. Development 138(21):4743–4752. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cai Q, Brissova M, Reinert RB et al (2012) Enhanced expression of VEGF-A in beta cells increases endothelial cell number but impairs islet morphogenesis and beta cell proliferation. Dev Biol 367(1):40–54. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jansson L, Carlsson PO (2019) Pancreatic blood flow with special emphasis on blood perfusion of the islets of Langerhans. Compr Physiol 9:799–837CrossRefGoogle Scholar
  12. 12.
    Carlsson PO, Palm F, Mattsson G (2002) Low revascularization of experimentally transplanted human pancreatic islets. J Clin Endocrinol Metab 87(12):5418–5423. CrossRefPubMedGoogle Scholar
  13. 13.
    Brissova M, Shostak A, Fligner CL et al (2015) Human islets have fewer blood vessels than mouse islets and the density of islet vascular structures is increased in type 2 diabetes. J Histochem Cytochem 63(8):637–645. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Virtanen I, Banerjee M, Palgi J et al (2008) Blood vessels of human islets of Langerhans are surrounded by a double basement membrane. Diabetologia 51(7):1181–1191. CrossRefPubMedGoogle Scholar
  15. 15.
    Kragl M, Schubert R, Karsjens H et al (2016) The biomechanical properties of an epithelial tissue determine the location of its vasculature. Nat Commun 7(1):13560. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Brissova M, Shostak A, Shiota M et al (2006) Pancreatic islet production of vascular endothelial growth factor-A is essential for islet vascularization, revascularization, and function. Diabetes 55(11):2974–2985. CrossRefPubMedGoogle Scholar
  17. 17.
    Iwashita N, Uchida T, Choi JB et al (2007) Impaired insulin secretion in vivo but enhanced insulin secretion from isolated islets in pancreatic beta cell-specific vascular endothelial growth factor-A knock-out mice. Diabetologia 50(2):380–389. CrossRefPubMedGoogle Scholar
  18. 18.
    Toyofuku Y, Uchida T, Nakayama S et al (2009) Normal islet vascularization is dispensable for expansion of beta-cell mass in response to high-fat diet induced insulin resistance. Biochem Biophys Res Commun 383(3):303–307. CrossRefPubMedGoogle Scholar
  19. 19.
    D’Hoker J, De Leu N, Heremans Y et al (2013) Conditional hypovascularization and hypoxia in islets do not overtly influence adult beta-cell mass or function. Diabetes 62(12):4165–4173. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jansson L, Andersson A, Bodin B, Kallskog O (2007) Pancreatic islet blood flow during euglycaemic, hyperinsulinaemic clamp in anaesthetized rats. Acta Physiol (Oxf) 189(4):319–324. CrossRefGoogle Scholar
  21. 21.
    Xiao X, Guo P, Chen Z et al (2013) Hypoglycemia reduces vascular endothelial growth factor A production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem 288(12):8636–8646. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nyman LR, Ford E, Powers AC, Piston DW (2010) Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo. Am J Physiol Endocrinol Metab 298(4):E807–E814. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Konishi M, Sakaguchi M, Lockhart SM et al (2017) Endothelial insulin receptors differentially control insulin signaling kinetics in peripheral tissues and brain of mice. Proc Natl Acad Sci U S A 114(40):E8478–E8487. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Obata A, Kimura T, Obata Y et al (2019) Vascular endothelial PDPK1 plays a pivotal role in the maintenance of pancreatic beta cell mass and function in adult male mice. Diabetologia 62(7):1225–1236. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nolan CJ, Damm P, Prentki M (2011) Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378(9786):169–181. CrossRefPubMedGoogle Scholar
  26. 26.
    Tabit CE, Chung WB, Hamburg NM, Vita JA (2010) Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord 11(1):61–74. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li X, Zhang L, Meshinchi S et al (2006) Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes 55(11):2965–2973. CrossRefPubMedGoogle Scholar
  28. 28.
    Mizuno A, Noma Y, Kuwajima M, Murakami T, Zhu M, Shima K (1999) Changes in islet capillary angioarchitecture coincide with impaired B cell function but not with insulin resistance in male Otsuka-Long-Evans-Tokushima fatty rats: dimorphism of the diabetic phenotype at an advanced age. Metabolism 48(4):477–483. CrossRefPubMedGoogle Scholar
  29. 29.
    Agudo J, Ayuso E, Jimenez V et al (2012) Vascular endothelial growth factor-mediated islet hypervascularization and inflammation contribute to progressive reduction of beta-cell mass. Diabetes 61(11):2851–2861. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brissova M, Aamodt K, Brahmachary P et al (2014) Islet microenvironment, modulated by vascular endothelial growth factor-A signaling, promotes beta cell regeneration. Cell Metab 19(3):498–511. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    De Leu N, Heremans Y, Coppens V et al (2014) Short-term overexpression of VEGF-A in mouse beta cells indirectly stimulates their proliferation and protects against diabetes. Diabetologia 57(1):140–147. CrossRefPubMedGoogle Scholar
  32. 32.
    Shah P, Lueschen N, Ardestani A et al (2016) Angiopoetin-2 signals do not mediate the hypervascularization of islets in type 2 diabetes. PLoS One 11(9):e0161834. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hogan MF, Liu AW, Peters MJ et al (2017) Markers of islet endothelial dysfunction occur in male B6.BKS(D)-Leprdb/J mice and may contribute to reduced insulin release. Endocrinology 158(2):293–303. CrossRefPubMedGoogle Scholar
  34. 34.
    Lacraz G, Giroix MH, Kassis N et al (2009) Islet endothelial activation and oxidative stress gene expression is reduced by IL-1Ra treatment in the type 2 diabetic GK rat. PLoS One 4(9):e6963. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tan KC, Chow WS, Ai VH, Metz C, Bucala R, Lam KS (2002) Advanced glycation end products and endothelial dysfunction in type 2 diabetes. Diabetes Care 25(6):1055–1059. CrossRefPubMedGoogle Scholar
  36. 36.
    Lan KC, Chiu CY, Kao CWH et al (2015) Advanced glycation end-products induce apoptosis in pancreatic islet endothelial cells via NF-kappaB-activated cyclooxygenase-2/prostaglandin E2 up-regulation. PLoS One 10(4):e0124418. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Herold KC, Vignali DA, Cooke A, Bluestone JA (2013) Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 13(4):243–256. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jansen A, Homo-Delarche F, Hooijkaas H, Leenen PJ, Dardenne M, Drexhage HA (1994) Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and beta-cell destruction in NOD mice. Diabetes 43(5):667–675. CrossRefPubMedGoogle Scholar
  39. 39.
    Irving-Rodgers HF, Ziolkowski AF, Parish CR et al (2008) Molecular composition of the peri-islet basement membrane in NOD mice: a barrier against destructive insulitis. Diabetologia 51(9):1680–1688. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Korpos E, Kadri N, Kappelhoff R et al (2013) The peri-islet basement membrane, a barrier to infiltrating leukocytes in type 1 diabetes in mouse and human. Diabetes 62(2):531–542. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Savinov AY, Wong FS, Stonebraker AC, Chervonsky AV (2003) Presentation of antigen by endothelial cells and chemoattraction are required for homing of insulin-specific CD8+ T cells. J Exp Med 197(5):643–656. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sandor AM, Lindsay RS, Dyjack N et al (2019) CD11c(+) cells are gatekeepers for lymphocyte trafficking to infiltrated islets during type 1 diabetes. Front Immunol 10:99. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Villalta SA, Lang J, Kubeck S et al (2013) Inhibition of VEGFR-2 reverses type 1 diabetes in NOD mice by abrogating insulitis and restoring islet function. Diabetes 62(8):2870–2878. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Akirav EM, Baquero MT, Opare-Addo LW et al (2011) Glucose and inflammation control islet vascular density and beta-cell function in NOD mice: control of islet vasculature and vascular endothelial growth factor by glucose. Diabetes 60(3):876–883. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Canzano JS, Nasif LH, Butterworth EA, Fu DA, Atkinson MA, Campbell-Thompson M (2018) Islet microvasculature alterations with loss of beta-cells in patients with type 1 diabetes. J Histochem Cytochem 22155418778546Google Scholar
  46. 46.
    Nikolova G, Jabs N, Konstantinova I et al (2006) The vascular basement membrane: a niche for insulin gene expression and beta cell proliferation. Dev Cell 10(3):397–405. CrossRefPubMedGoogle Scholar
  47. 47.
    Kaido T, Yebra M, Cirulli V, Montgomery AM (2004) Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha1beta1. J Biol Chem 279(51):53762–53769. CrossRefPubMedGoogle Scholar
  48. 48.
    Guney MA, Petersen CP, Boustani A et al (2011) Connective tissue growth factor acts within both endothelial cells and beta cells to promote proliferation of developing beta cells. Proc Natl Acad Sci U S A 108(37):15242–15247. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Riley KG, Pasek RC, Maulis MF et al (2015) Connective tissue growth factor modulates adult beta-cell maturity and proliferation to promote beta-cell regeneration in mice. Diabetes 64(4):1284–1298. CrossRefPubMedGoogle Scholar
  50. 50.
    Johansson M, Mattsson G, Andersson A, Jansson L, Carlsson PO (2006) Islet endothelial cells and pancreatic beta-cell proliferation: studies in vitro and during pregnancy in adult rats. Endocrinology 147(5):2315–2324. CrossRefPubMedGoogle Scholar
  51. 51.
    Staels W, Heremans Y, Leuckx G et al (2017) Conditional islet hypovascularisation does not preclude beta cell expansion during pregnancy in mice. Diabetologia 60(6):1051–1056. CrossRefPubMedGoogle Scholar
  52. 52.
    Shapiro AM, Pokrywczynska M, Ricordi C (2017) Clinical pancreatic islet transplantation. Nat Rev Endocrinol 13(5):268–277. CrossRefPubMedGoogle Scholar
  53. 53.
    Barton FB, Rickels MR, Alejandro R et al (2012) Improvement in outcomes of clinical islet transplantation: 1999-2010. Diabetes Care 35(7):1436–1445. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Biarnes M, Montolio M, Nacher V, Raurell M, Soler J, Montanya E (2002) Beta-cell death and mass in syngeneically transplanted islets exposed to short- and long-term hyperglycemia. Diabetes 51(1):66–72. CrossRefPubMedGoogle Scholar
  55. 55.
    Harlan DM, Kenyon NS, Korsgren O, Roep BO (2009) Immunology of diabetes S: current advances and travails in islet transplantation. Diabetes 58(10):2175–2184. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Nyqvist D, Speier S, Rodriguez-Diaz R et al (2011) Donor islet endothelial cells in pancreatic islet revascularization. Diabetes 60(10):2571–2577. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhang L, Vincent MA, Richards SM, Clerk LH, Rattigan S, Clark MG, Barrett EJ (2004) Insulin sensitivity of muscle capillary recruitment in vivo. Diabetes 53(2):447–453. CrossRefPubMedGoogle Scholar
  58. 58.
    Su D, Zhang N, He J et al (2007) Angiopoietin-1 production in islets improves islet engraftment and protects islets from cytokine-induced apoptosis. Diabetes 56(9):2274–2283. CrossRefPubMedGoogle Scholar
  59. 59.
    Olerud J, Johansson M, Lawler J, Welsh N, Carlsson PO (2008) Improved vascular engraftment and graft function after inhibition of the angiostatic factor thrombospondin-1 in mouse pancreatic islets. Diabetes 57(7):1870–1877. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Johansson M, Olerud J, Jansson L, Carlsson PO (2009) Prolactin treatment improves engraftment and function of transplanted pancreatic islets. Endocrinology 150(4):1646–1653. CrossRefPubMedGoogle Scholar
  61. 61.
    Song HJ, Xue WJ, Li Y et al (2010) Prolongation of islet graft survival using concomitant transplantation of islets and vascular endothelial cells in diabetic rats. Transplant Proc 42(7):2662–2665. CrossRefPubMedGoogle Scholar
  62. 62.
    Kang S, Park HS, Jo A et al (2012) Endothelial progenitor cell cotransplantation enhances islet engraftment by rapid revascularization. Diabetes 61(4):866–876. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kim JH, Oh BJ, Lee HN, Park HS, Park SG, Park KS (2011) Endothelial colony-forming cell coating of pig islets prevents xenogeneic instant blood-mediated inflammatory reaction. Cell Transplant 20(11-12):1805–1815. CrossRefPubMedGoogle Scholar
  64. 64.
    Hendrickx B, Verdonck K, Van den Berge S et al (2010) Integration of blood outgrowth endothelial cells in dermal fibroblast sheets promotes full thickness wound healing. Stem Cells 28(7):1165–1177. CrossRefPubMedGoogle Scholar
  65. 65.
    Coppens V, Heremans Y, Leuckx G et al (2013) Human blood outgrowth endothelial cells improve islet survival and function when co-transplanted in a mouse model of diabetes. Diabetologia 56(2):382–390. CrossRefPubMedGoogle Scholar
  66. 66.
    Staels W, Verdonck Y, Heremans Y et al (2018) Vegf-A mRNA transfection as a novel approach to improve mouse and human islet graft revascularisation. Diabetologia 61(8):1804–1810. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beta Cell Neogenesis (BENE)Vrije Universiteit BrusselBrusselsBelgium
  2. 2.Institut Cochin, CNRS, INSERMUniversité de ParisParisFrance
  3. 3.Department of EndocrinologyUZ BrusselBrusselsBelgium
  4. 4.Department of EndocrinologyASZ AalstAalstBelgium

Personalised recommendations