Advertisement

Diabetologia

, Volume 62, Issue 6, pp 1036–1047 | Cite as

Imaging mass spectrometry enables molecular profiling of mouse and human pancreatic tissue

  • Boone M. Prentice
  • Nathaniel J. Hart
  • Neil Phillips
  • Rachana Haliyur
  • Audra Judd
  • Radhika Armandala
  • Jeffrey M. Spraggins
  • Cindy L. Lowe
  • Kelli L. Boyd
  • Roland W. Stein
  • Christopher V. Wright
  • Jeremy L. Norris
  • Alvin C. Powers
  • Marcela Brissova
  • Richard M. CaprioliEmail author
Article

Abstract

Aims/hypothesis

The molecular response and function of pancreatic islet cells during metabolic stress is a complex process. The anatomical location and small size of pancreatic islets coupled with current methodological limitations have prevented the achievement of a complete, coherent picture of the role that lipids and proteins play in cellular processes under normal conditions and in diseased states. Herein, we describe the development of untargeted tissue imaging mass spectrometry (IMS) technologies for the study of in situ protein and, more specifically, lipid distributions in murine and human pancreases.

Methods

We developed matrix-assisted laser desorption/ionisation (MALDI) IMS protocols to study metabolite, lipid and protein distributions in mouse (wild-type and ob/ob mouse models) and human pancreases. IMS allows for the facile discrimination of chemically similar lipid and metabolite isoforms that cannot be distinguished using standard immunohistochemical techniques. Co-registration of MS images with immunofluorescence images acquired from serial tissue sections allowed accurate cross-registration of cell types. By acquiring immunofluorescence images first, this serial section approach guides targeted high spatial resolution IMS analyses (down to 15 μm) of regions of interest and leads to reduced time requirements for data acquisition.

Results

MALDI IMS enabled the molecular identification of specific phospholipid and glycolipid isoforms in pancreatic islets with intra-islet spatial resolution. This technology shows that subtle differences in the chemical structure of phospholipids can dramatically affect their distribution patterns and, presumably, cellular function within the islet and exocrine compartments of the pancreas (e.g. 18:1 vs 18:2 fatty acyl groups in phosphatidylcholine lipids). We also observed the localisation of specific GM3 ganglioside lipids [GM3(d34:1), GM3(d36:1), GM3(d38:1) and GM3(d40:1)] within murine islet cells that were correlated with a higher level of GM3 synthase as verified by immunostaining. However, in human pancreas, GM3 gangliosides were equally distributed in both the endocrine and exocrine tissue, with only one GM3 isoform showing islet-specific localisation.

Conclusions/interpretation

The development of more complete molecular profiles of pancreatic tissue will provide important insight into the molecular state of the pancreas during islet development, normal function, and diseased states. For example, this study demonstrates that these results can provide novel insight into the potential signalling mechanisms involving phospholipids and glycolipids that would be difficult to detect by targeted methods, and can help raise new hypotheses about the types of physiological control exerted on endocrine hormone-producing cells in islets. Importantly, the in situ measurements afforded by IMS do not require a priori knowledge of molecules of interest and are not susceptible to the limitations of immunohistochemistry, providing the opportunity for novel biomarker discovery. Notably, the presence of multiple GM3 isoforms in mouse islets and the differential localisation of lipids in human tissue underscore the important role these molecules play in regulating insulin modulation and suggest species, organ, and cell specificity. This approach demonstrates the importance of both high spatial resolution and high molecular specificity to accurately survey the molecular composition of complex, multi-functional tissues such as the pancreas.

Keywords

Diabetes Ganglioside Imaging mass spectrometry MALDI Pancreas Phospholipid 

Abbreviations

FT-ICR

Fourier transform

ion cyclotron resonance

GM3

Monosialodihexosylganglioside (NANA-Gal-Glc-ceramide)

IHC

Immunohistochemistry

IMS

Imaging mass spectrometry

MALDI

Matrix-assisted laser desorption/ionisation

MS/MS

Tandem mass spectrometry

m/z

Mass-to-charge ratio

nanoDESI

Nanospray desorption electrospray ionisation

PC

Phosphatidylcholine

PE

Phosphatidylethanolamine

PI

Phosphatidylinositol

TIC

Total ion current

Notes

Contribution statement

BMP, NJH, NP, RH, MB, JLN, ACP and RMC conceived and designed the research. NJH and NP performed glucose tolerance tests and animal euthanasia. BMP and AJ prepared tissue sections. BMP performed MALDI IMS and MS/MS analyses. NJH, NP, RH, AJ and RA conceived experiments and performed hormone IHC. AJ, CLL and KLB performed GM3 synthase IHC. BMP analysed MS data. BMP, NJH, NP, RH, JMS, RWS, CVW, MB, JLN, ACP and RMC interpreted results of experiments. BMP prepared figures and drafted the manuscript prior to revision and approval by the other authors. RMC is the guarantor of this work.

Funding

This work was supported by the National Institutes of Health (NIH) under award P41 GM103391-07 (National Institute of General Medical Sciences [NIGMS]) and by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)-supported Human Islet Research Network (HIRN, RRID:SCR_014393; https://hirnetwork.org; UC4DK104211, DK108120, DK104218 and DK112232), DK106755, DK72473, DK89572, DK97829, DK94199, the Vanderbilt Diabetes Research and Training Center (DK20593) and grants from the JDRF, the Leona M. and Harry B. Helmsley Charitable Trust, and the Department of Veterans Affairs. TPSR is supported by the NIH under awards 5P30 CA68485-19 (National Cancer Institute [NCI]) and 2U24 DK059637-16 (Vanderbilt Mouse Metabolic Phenotyping Center). BMP was supported by the NIH/NIDDK under award F32 FDK105841A.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

125_2019_4855_MOESM1_ESM.pdf (614 kb)
ESM (PDF 613 kb)

References

  1. 1.
    Slack J (1995) Developmental biology of the pancreas. Development 121:1569–1580PubMedGoogle Scholar
  2. 2.
    Prado C, Pugh-Bernard A, Elghazi L, Sosa-Pineda B, Sussel L (2004) Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development. Proc Natl Acad Sci U S A 101(9):2924–2929.  https://doi.org/10.1073/pnas.0308604100 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wang Q, Jin T (2009) The role of insulin signaling in the development of β-cell dysfunction and diabetes. Islets 1(2):95–101.  https://doi.org/10.4161/isl.1.2.9263 CrossRefPubMedGoogle Scholar
  4. 4.
    Talchai C, Lin H, Kitamura T, Accili D (2009) Genetic and biochemical pathways of beta-cell failure in type 2 diabetes. Diabetes Obes Metab 11(Suppl 4):38–45.  https://doi.org/10.1111/j.1463-1326.2009.01115.x CrossRefPubMedGoogle Scholar
  5. 5.
    Buschard K, Josefsen K, Hansen S et al (1994) Sulphatide in islets of Langerhans and in organs affected in diabetic late complications: a study in human and animal tissue. Diabetologia 37(10):1000–1006.  https://doi.org/10.1007/BF00400463 CrossRefPubMedGoogle Scholar
  6. 6.
    Lang F, Ullrich S, Gulbins E (2011) Ceramide formation as a target in beta-cell survival and function. Expert Opin Ther Targets 15(9):1061–1071.  https://doi.org/10.1517/14728222.2011.588209 CrossRefPubMedGoogle Scholar
  7. 7.
    Boslem E, Meikle P, Biden T (2012) Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction. Islets 4(3):177–187.  https://doi.org/10.4161/isl.20102 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Galadari S, Rahman A, Pallichankandy S, Galadari A, Thayyullathil F (2013) Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis 12(1):98.  https://doi.org/10.1186/1476-511X-12-98 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Russo S, Ross J, Cowart L (2013) Sphingolipids in obesity, type 2 diabetes, and metabolic disease. Handb Exp Pharmacol 216:373–401Google Scholar
  10. 10.
    Hsu F, Bohrer A, Wohltmann M et al (2000) Electrospray ionization mass spectrometric analyses of changes in tissue phospholipid molecular species during the evolution of hyperlipidemia and hyperglycemia in Zucker diabetic fatty rats. Lipids 35(8):839–854.  https://doi.org/10.1007/S11745-000-0593-z CrossRefPubMedGoogle Scholar
  11. 11.
    Ramanadham S, Hsu F, Zhang S, Bohrer A, Ma Z, Turk J (2000) Electrospray ionization mass spectrometric analyses of phospholipids from INS-1 insulinoma cells: comparison to pancreatic islets and effects of fatty acid supplementation on phospholipid composition and insulin secretion. Biochim Biophys Acta 1484(2-3):251–266.  https://doi.org/10.1016/S1388-1981(00)00022-6 CrossRefPubMedGoogle Scholar
  12. 12.
    Weijers RN (2012) Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus. Curr Diabetes Rev 8(5):390–400.  https://doi.org/10.2174/157339912802083531 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tagami S, Inokuchi J, Kabayama K et al (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277(5):3085–3092.  https://doi.org/10.1074/jbc.M103705200 CrossRefPubMedGoogle Scholar
  14. 14.
    Lipina C, Hundal HS (2015) Ganglioside GM3 as a gatekeeper of obesity-associated insulin resistance: evidence and mechanisms. FEBS Lett 589(21):3221–3227.  https://doi.org/10.1016/j.febslet.2015.09.018 CrossRefPubMedGoogle Scholar
  15. 15.
    Metz TO, Jacobs JM, Gritsenko MA et al (2006) Characterization of the human pancreatic islet proteome by two-dimensional LC/MS/MS. J Proteome Res 5(12):3345–3354.  https://doi.org/10.1021/pr060322n CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Petyuk VA, Qian WJ, Hinault C et al (2008) Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues. J Proteome Res 7(8):3114–3126.  https://doi.org/10.1021/pr800205b CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Waanders LF, Chwalek K, Monetti M, Kumar C, Lammert E, Mann M (2009) Quantitative proteomic analysis of single pancreatic islets. Proc Natl Acad Sci U S A 106(45):18902–18907.  https://doi.org/10.1073/pnas.0908351106 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    El Ouaamari A, Zhou JY, Liew CW et al (2015) Compensatory islet response to insulin resistance revealed by quantitative proteomics. J Proteome Res 14(8):3111–3122.  https://doi.org/10.1021/acs.jproteome.5b00587 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pearson GL, Mellett N, Chu KY, Boslem E, Meikle PJ, Biden TJ (2016) A comprehensive lipidomic screen of pancreatic beta-cells using mass spectroscopy defines novel features of glucose-stimulated turnover of neutral lipids, sphingolipids and plasmalogens. Mol Metab 5(6):404–414.  https://doi.org/10.1016/j.molmet.2016.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Roomp K, Kristinsson H, Schvartz D et al (2017) Combined lipidomic and proteomic analysis of isolated human islets exposed to palmitate reveals time-dependent changes in insulin secretion and lipid metabolism. PLoS One 12(4):e0176391.  https://doi.org/10.1371/journal.pone.0176391 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69(23):4751–4760.  https://doi.org/10.1021/ac970888i CrossRefPubMedGoogle Scholar
  22. 22.
    McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26(4):606–643.  https://doi.org/10.1002/mas.20124 CrossRefPubMedGoogle Scholar
  23. 23.
    Norris JL, Caprioli RM (2013) Imaging mass spectrometry: a new tool for pathology in a molecular age. Proteomics Clin Appl 7(11-12):733–738.  https://doi.org/10.1002/prca.201300055 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Norris JL, Caprioli RM (2013) Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 113(4):2309–2342.  https://doi.org/10.1021/cr3004295 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wu CP, Dill AL, Eberlin LS, Cooks RG, Ifa DR (2013) Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev 32(3):218–243.  https://doi.org/10.1002/mas.21360 CrossRefPubMedGoogle Scholar
  26. 26.
    Spengler B (2015) Mass spectrometry imaging of biomolecular information. Anal Chem 87(1):64–82.  https://doi.org/10.1021/ac504543v CrossRefPubMedGoogle Scholar
  27. 27.
    Minerva L, Clerens S, Baggerman G, Arckens L (2008) Direct profiling and identification of peptide expression differences in the pancreas of control and ob/ob mice by imaging mass spectrometry. Proteomics 8(18):3763–3774.  https://doi.org/10.1002/pmic.200800237 CrossRefPubMedGoogle Scholar
  28. 28.
    Djidja MC, Claude E, Snel MF et al (2009) MALDI-ion mobility separation-mass spectrometry imaging of glucose-regulated protein 78 kDa (Grp78) in human formalin-fixed, paraffin-embedded pancreatic adenocarcinoma tissue sections. J Proteome Res 8(10):4876–4884.  https://doi.org/10.1021/pr900522m CrossRefPubMedGoogle Scholar
  29. 29.
    Green-Mitchell SM, Cazares LH, Semmes OJ, Nadler JL, Nyalwidhe JO (2011) On-tissue identification of insulin: in situ reduction coupled with mass spectrometry imaging. Proteomics Clin Appl 5(7-8):448–453.  https://doi.org/10.1002/prca.201000152 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Minerva L, Boonen K, Menschaert G, Landuyt B, Baggerman G, Arckens L (2011) Linking mass spectrometric imaging and traditional peptidomics: a validation in the obese mouse model. Anal Chem 83(20):7682–7691.  https://doi.org/10.1021/ac200888j CrossRefPubMedGoogle Scholar
  31. 31.
    Grüner BM, Hahne H, Mazur PK et al (2012) MALDI imaging mass spectrometry for in situ proteomic analysis of preneoplastic lesions in pancreatic cancer. PLoS One 7(6).  https://doi.org/10.1371/journal.pone.0039424 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Thiery-Lavenant G, Zavalin AI, Caprioli RM (2013) Targeted multiplex imaging mass spectrometry in transmission geometry for subcellular spatial resolution. J Am Soc Mass Spectrom 24(4):609–614.  https://doi.org/10.1007/s13361-012-0563-z CrossRefPubMedGoogle Scholar
  33. 33.
    Janson ET, Comi TJ, Rubakhin SS, Sweedler JV (2016) Single cell peptide heterogeneity of rat islets of Langerhans. ACS Chem Biol 11(9):2588–2595.  https://doi.org/10.1021/acschembio.6b00602 CrossRefGoogle Scholar
  34. 34.
    Djidja M-C, Claude E, Snel M et al (2010) Novel molecular tumour classification using MALDI-mass spectrometry imaging of tissue micro-array. Anal Bioanal Chem 397(2):587–601.  https://doi.org/10.1007/s00216-010-3554-6 CrossRefPubMedGoogle Scholar
  35. 35.
    Eberlin LS, Margulis K, Planell-Mendez I et al (2016) Pancreatic cancer surgical resection margins: molecular assessment by mass spectrometry imaging. PLoS Med 13(8):e1002108.  https://doi.org/10.1371/journal.pmed.1002108 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yin R, Kyle J, Burnum-Johnson K et al (2018) High spatial resolution imaging of mouse pancreatic islets using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 90(11):6548–6555.  https://doi.org/10.1021/acs.analchem.8b00161 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Brissova M, Haliyur R, Saunders D et al (2018) Alpha cell function and gene expression are compromised in type 1 diabetes. Cell Rep 22(10):2667–2676.  https://doi.org/10.1016/j.celrep.2018.02.032 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hart NJ, Aramandla R, Poffenberger G et al (2018) Cystic fibrosis-related diabetes is caused by islet loss and inflammation. JCI Insight 3(8):e98240.  https://doi.org/10.1172/jci.insight.98240
  39. 39.
    Prentice BM, Caprioli RM (2016) The need for speed in matrix-assisted laser desorption/ionization imaging mass spectrometry. J Postdoc Res 4:3–13Google Scholar
  40. 40.
    van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124.  https://doi.org/10.1038/nrm2330 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY (2003) Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes 52(3):726–733.  https://doi.org/10.2337/diabetes.52.3.726 CrossRefPubMedGoogle Scholar
  42. 42.
    Dotta F, Tiberti C, Previti M et al (1993) Rat pancreatic ganglioside expression: differences between a model of autoimmune islet B cell destruction and a normal strain. Clin Immunol Immunopathol 66(2):143–149.  https://doi.org/10.1006/clin.1993.1018 CrossRefPubMedGoogle Scholar
  43. 43.
    Dotta F, Previti R, Neerman-Arbez M et al (1998) The GM2-1 ganglioside islet autoantigen in insulin-dependent diabetes mellitus is expressed in secretory granules and is not beta-cell specific. Endocrinology 139(1):316–319.  https://doi.org/10.1210/endo.139.1.5708 CrossRefPubMedGoogle Scholar
  44. 44.
    Saito M, Sugiyama K (2000) A distinct ganglioside composition of rat pancreatic islets. Arch Biochem Biophys 376(2):371–376.  https://doi.org/10.1006/abbi.2000.1729 CrossRefPubMedGoogle Scholar
  45. 45.
    Dotta F, Colman PG, Lombardi D et al (1989) Ganglioside expression in human pancreatic islets. Diabetes 38(11):1478–1483.  https://doi.org/10.2337/diab.38.11.1478 CrossRefPubMedGoogle Scholar
  46. 46.
    Saito M, Ito M, Sugiyama K (1999) A specific loss of c-series gangliosides in pancreas streptozotocin-induced diabetic rats. Life Sci 64(20):1803–1810.  https://doi.org/10.1016/S0024-3205(99)00122-8 CrossRefPubMedGoogle Scholar
  47. 47.
    Dotta F, Peterson LB, Previti M et al (1992) Pancreatic islet ganglioside expression in nonobese diabetic mice: comparison with C57BL/10 mice and changes after autoimmune beta-cell destruction. Endocrinology 130(1):37–42.  https://doi.org/10.1210/endo.130.1.1727711 CrossRefPubMedGoogle Scholar
  48. 48.
    Steiner DJ, Kim A, Miller K, Hara M (2010) Pancreatic islet plasticity interspecies comparison of islet architecture and composition. Islets 2(3):135–145.  https://doi.org/10.4161/isl.2.3.11815 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dolenšek J, Rupnik MS, Stožer A (2015) Structural similarities and differences between the human and the mouse pancreas. Islets 7(1):e1024405.  https://doi.org/10.1080/19382014.2015.1024405 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Boone M. Prentice
    • 1
    • 2
  • Nathaniel J. Hart
    • 3
  • Neil Phillips
    • 3
  • Rachana Haliyur
    • 4
  • Audra Judd
    • 2
  • Radhika Armandala
    • 3
  • Jeffrey M. Spraggins
    • 1
    • 2
    • 5
  • Cindy L. Lowe
    • 6
  • Kelli L. Boyd
    • 6
  • Roland W. Stein
    • 4
  • Christopher V. Wright
    • 7
  • Jeremy L. Norris
    • 1
    • 2
    • 5
  • Alvin C. Powers
    • 3
    • 4
    • 8
  • Marcela Brissova
    • 3
  • Richard M. Caprioli
    • 1
    • 2
    • 5
    • 9
    Email author
  1. 1.9160 MRB III, Department of BiochemistryVanderbilt UniversityNashvilleUSA
  2. 2.Mass Spectrometry Research CenterVanderbilt UniversityNashvilleUSA
  3. 3.Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical CenterNashvilleUSA
  4. 4.Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleUSA
  5. 5.Department of ChemistryVanderbilt UniversityNashvilleUSA
  6. 6.Translational Pathology Shared ResourceVanderbilt University Medical CenterNashvilleUSA
  7. 7.Department of Cell & Developmental BiologyVanderbilt UniversityNashvilleUSA
  8. 8.Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleUSA
  9. 9.Department of Pharmacology and MedicineVanderbilt UniversityNashvilleUSA

Personalised recommendations