, Volume 62, Issue 4, pp 717–725 | Cite as

Expression of GLP-1 receptors in insulin-containing interneurons of rat cerebral cortex

  • Éva A. Csajbók
  • Ágnes K. Kocsis
  • Nóra Faragó
  • Szabina Furdan
  • Balázs Kovács
  • Sándor Lovas
  • Gábor Molnár
  • István Likó
  • Ágnes Zvara
  • László G. Puskás
  • Attila Patócs
  • Gábor TamásEmail author



Glucagon-like peptide 1 (GLP-1) receptors are expressed by pancreatic beta cells and GLP-1 receptor signalling promotes insulin secretion. GLP-1 receptor agonists have neural effects and are therapeutically promising for mild cognitive impairment and Alzheimer’s disease. Our previous results showed that insulin is released by neurogliaform neurons in the cerebral cortex, but the expression of GLP-1 receptors on insulin-producing neocortical neurons has not been tested. In this study, we aimed to determine whether GLP-1 receptors are present in insulin-containing neurons.


We harvested the cytoplasm of electrophysiologically and anatomically identified neurogliaform interneurons during patch-clamp recordings performed in slices of rat neocortex. Using single-cell digital PCR, we determined copy numbers of Glp1r mRNA and other key genes in neurogliaform cells harvested in conditions corresponding to hypoglycaemia (0.5 mmol/l glucose) and hyperglycaemia (10 mmol/l glucose). In addition, we performed whole-cell patch-clamp recordings on neurogliaform cells to test the effects of GLP-1 receptor agonists for functional validation of single-cell digital PCR results.


Single-cell digital PCR revealed GLP-1 receptor expression in neurogliaform cells and showed that copy numbers of mRNA of the Glp1r gene in hyperglycaemia exceeded those in hypoglycaemia by 9.6 times (p < 0.008). Moreover, single-cell digital PCR confirmed co-expression of Glp1r and Ins2 mRNA in neurogliaform cells. Functional expression of GLP-1 receptors was confirmed with whole-cell patch-clamp electrophysiology, showing a reversible effect of GLP-1 on neurogliaform cells. This effect was prevented by pre-treatment with the GLP-1 receptor-specific antagonist exendin-3(9-39) and was absent in hypoglycaemia. In addition, single-cell digital PCR of neurogliaform cells revealed that the expression of transcription factors (Pdx1, Isl1, Mafb) are important in beta cell development.


Our results provide evidence for the functional expression of GLP-1 receptors in neurons known to release insulin in the cerebral cortex. Hyperglycaemia increases the expression of GLP-1 receptors in neurogliaform cells, suggesting that endogenous incretins and therapeutic GLP-1 receptor agonists might have effects on these neurons, similar to those in pancreatic beta cells.


Animal Basic science Gastro-entero pancreatic factors Hormone receptors Other techniques Rat 



Gamma-aminobutyric acid


Gamma-aminobutyric acid type A


Gamma-aminobutyric acid type B


Glucagon-like peptide 1


Insulin gene enhancer binding protein, islet factor 1



The authors thank É. Tóth, M. V. Várady and N. Tóth for technical assistance (MTA-SZTE Research Group for Cortical Microcircuits, University of Szeged, Szeged, Hungary). Some of these data were presented as an abstract at the ADA 77th Scientific Sessions in 2017.

Contribution statement

EAC and GT formulated the key hypothesis, designed the experiments, contributed to the data analysis, interpretation and production of figures, and wrote the paper with final approval of the version to be published. ÁKK, NF, EAC, ÁZ, IL, AP and LGP performed single-cell digital PCR and molecular data interpretation, drafted the article and gave final approval of the version to be published. SF, BK, SL and GM performed electrophysiology, harvested cytoplasms, drafted the text, performed analysis and produced figures, drafted the manuscript and gave final approval of the version to be published. GT is responsible for the integrity of the work as a whole.


This work was supported by the European Research Council INTERIMPACT project (GT), the Hungarian Academy of Sciences (GT), the National Research, Development and Innovation Office of Hungary (GINOP-2.3.2-15-2016-00018, VKSZ-14-1-2015-0155), the Ministry of Human Capacities, Hungary (grant 20391-3/2018/FEKUSTRAT) and by the National Brain Research Program, Hungary (GT).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.


  1. 1.
    Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87(4):1409–1439. CrossRefPubMedGoogle Scholar
  2. 2.
    Lovshin JA, Drucker DJ (2009) Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol 5(5):262–269. CrossRefPubMedGoogle Scholar
  3. 3.
    Kastin AJ, Akerstrom V, Pan W (2002) Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J Mol Neurosci 18(1-2):7–14. CrossRefPubMedGoogle Scholar
  4. 4.
    Hunter K, Hölscher C (2012) Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci 13(1):33. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cork SC, Richards JE, Holt MK, Gribble FM, Reimann F, Trapp S (2015) Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab 4(10):718–731. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hamilton A, Hölscher C (2009) Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. Neuroreport 20(13):1161–1166. CrossRefPubMedGoogle Scholar
  7. 7.
    Trapp S, Richards JE (2013) The gut hormone glucagon-like peptide-1 produced in brain: is this physiologically relevant? Curr Opin Pharmacol 13(6):964–969. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Llewellyn-Smith IJ, Reimann F, Gribble FM, Trapp S (2011) Preproglucagon neurons project widely to autonomic control areas in the mouse brain. Neuroscience 180:111–121. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Devaskar SU, Singh BS, Carnaghi LR et al (1993) Insulin II gene expression in rat central nervous system. Regul Pept 48(1-2):55–63. CrossRefPubMedGoogle Scholar
  10. 10.
    Gerozissis K (2010) The brain-insulin connection, metabolic diseases and related pathologies. In: Craft S (ed) Diabetes, insulin and Alzheimer’s disease. Springer, Berlin, pp 21–42. CrossRefGoogle Scholar
  11. 11.
    Gray SM, Meijer RI, Barrett EJ (2014) Insulin regulates brain function, but how does it get there? Diabetes 63(12):3992–3997. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kuwabara T, Kagalwala MN, Onuma Y et al (2011) Insulin biosynthesis in neuronal progenitors derived from adult hippocampus and the olfactory bulb. EMBO Mol Med 3(12):742–754. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Molnár G, Faragó N, Kocsis ÁK et al (2014) GABAergic neurogliaform cells represent local sources of insulin in the cerebral cortex. J Neurosci 34(4):1133–1137. CrossRefPubMedGoogle Scholar
  14. 14.
    Csajbók ÉA, Tamás G (2016) Cerebral cortex: a target and source of insulin? Diabetologia 59(8):1609–1615. CrossRefPubMedGoogle Scholar
  15. 15.
    Craft S, Baker LD, Montine TJ et al (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38. CrossRefPubMedGoogle Scholar
  16. 16.
    Holscher C (2016) Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide analogues as novel treatments for Alzheimer’s and Parkinson’s disease. Cardiovasc Endocrinol 5(3):93–98. CrossRefGoogle Scholar
  17. 17.
    Gejl M, Gjedde A, Egefjord L et al (2016) In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci 8:108. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bertilsson G, Patrone C, Zachrisson O et al (2008) Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J Neurosci Res 86(2):326–338. CrossRefPubMedGoogle Scholar
  19. 19.
    Hakon J, Ruscher K, Romner B, Tomasevic G (2015) Preservation of the blood brain barrier and cortical neuronal tissue by liraglutide, a long acting glucagon-like-1 analogue, after experimental traumatic brain injury. PLoS One 10(3):e0120074. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Greig NH, Tweedie D, Rachmany L et al (2014) Incretin mimetics as pharmacologic tools to elucidate and as a new drug strategy to treat traumatic brain injury. Alzheimers Dement 10(1):S62–S75. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Faragó N, Kocsis ÁK, Lovas S et al (2013) Digital PCR to determine the number of transcripts from single neurons after patch-clamp recording. Biotechniques 54(6):327–336. CrossRefPubMedGoogle Scholar
  22. 22.
    Silver IA, Erecińska M (1994) Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci 14:5068–5076CrossRefGoogle Scholar
  23. 23.
    Alpert S, Hanahan D, Teitelman G (1988) Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53(2):295–308. CrossRefPubMedGoogle Scholar
  24. 24.
    Habener JF, Kemp DM, Thomas MK (2005) Minireview: transcriptional regulation in pancreatic development. Endocrinology 146(3):1025–1034. CrossRefPubMedGoogle Scholar
  25. 25.
    Hang Y, Stein R (2011) MafA and MafB activity in pancreatic β cells. Trends Endocrinol Metab 22(9):364–373. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Baron M, Veres A, Wolock SL et al (2016) A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst 3(4):346–360.e4. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lawlor N, George J, Bolisetty M et al (2017) Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res 27(2):208–222. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li J, Klughammer J, Farlik M et al (2016) Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Rep 17(2):178–187. CrossRefPubMedGoogle Scholar
  29. 29.
    Muraro MJ, Dharmadhikari G, Grün D et al (2016) A single-cell transcriptome atlas of the human pancreas. Cell Syst 3(4):385–394.e3. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang YJ, Schug J, Won K-J et al (2016) Single-cell transcriptomics of the human endocrine pancreas. Diabetes 65(10):3028–3038. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Farkas I, Vastagh C, Farkas E et al (2016) Glucagon-like peptide-1 excites firing and increases GABAergic miniature postsynaptic currents (mPSCs) in gonadotropin-releasing hormone (GnRH) neurons of the male mice via activation of nitric oxide (NO) and suppression of endocannabinoid signaling pathways. Front Cell Neurosci 10:214. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Korol SV, Jin Z, Babateen O, Birnir B (2015) GLP-1 and exendin-4 transiently enhance GABAA receptor-mediated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. Diabetes 64(1):79–89. CrossRefPubMedGoogle Scholar
  33. 33.
    Olah S, Fule M, Komlosi G et al (2009) Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461(7268):1278–1281. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Overstreet-Wadiche L, McBain CJ (2015) Neurogliaform cells in cortical circuits. Nat Rev Neurosci 16(8):458–468. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jin Z, Jin Y, Kumar-Mendu S et al (2011) Insulin reduces neuronal excitability by turning on GABA(A) channels that generate tonic current. PLoS One 6(1):e16188. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Anthony K, Reed LJ, Dunn JT et al (2006) Attenuation of insulin-evoked responses in brain networks controlling appetite and reward in insulin resistance: the cerebral basis for impaired control of food intake in metabolic syndrome? Diabetes 55(11):2986–2992. CrossRefPubMedGoogle Scholar
  37. 37.
    Heni M, Kullmann S, Preissl H et al (2015) Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol 11(12):701–711. CrossRefPubMedGoogle Scholar
  38. 38.
    Kleinridders A, Ferris HA, Cai W, Kahn CR (2014) Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63(7):2232–2243. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Olah S, Komlosi G, Szabadics J et al (2007) Output of neurogliaform cells to various neuron types in the human and rat cerebral cortex. Front Neural Circuits 1:4. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278(5337):412–419. CrossRefPubMedGoogle Scholar
  41. 41.
    Thor S, Ericson J, Brännström T, Edlund T (1991) The homeodomain LIM protein Isl-1 is expressed in subsets of neurons and endocrine cells in the adult rat. Neuron 7(6):881–889. CrossRefPubMedGoogle Scholar
  42. 42.
    Karlsson O, Thor S, Norberg T et al (1990) Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo-and a Cys-His domain. Nature 344(6269):879–882. CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang H, Wang W-P, Guo T et al (2009) The LIM-homeodomain protein ISL1 activates insulin gene promoter directly through synergy with BETA2. J Mol Biol 392(3):566–577. CrossRefPubMedGoogle Scholar
  44. 44.
    Guo T, Wang W, Zhang H et al (2011) ISL1 promotes pancreatic islet cell proliferation. PLoS One 6(8):e22387. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pfaff SL, Mendelsohn M, Stewart CL et al (1996) Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84(2):309–320. CrossRefPubMedGoogle Scholar
  46. 46.
    Benner C, van der Meulen T, Cacéres E et al (2014) The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics 15(1):620. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Cobos I, Long JE, Thwin MT, Rubenstein JL (2006) Cellular patterns of transcription factor expression in developing cortical interneurons. Cereb Cortex 16(Suppl_1):i82–i88. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Éva A. Csajbók
    • 1
    • 2
  • Ágnes K. Kocsis
    • 1
  • Nóra Faragó
    • 1
    • 3
    • 4
  • Szabina Furdan
    • 1
  • Balázs Kovács
    • 1
  • Sándor Lovas
    • 1
  • Gábor Molnár
    • 1
  • István Likó
    • 5
  • Ágnes Zvara
    • 3
  • László G. Puskás
    • 3
    • 4
  • Attila Patócs
    • 5
  • Gábor Tamás
    • 1
    Email author
  1. 1.MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and NeuroscienceUniversity of SzegedSzegedHungary
  2. 2.1st Department of Internal MedicineUniversity of SzegedSzegedHungary
  3. 3.Laboratory of Functional Genomics, Institute of Genetics, Biological Research CenterHungarian Academy of SciencesSzegedHungary
  4. 4.Avidin LtdSzegedHungary
  5. 5.MTA Lendület Hereditary Endocrine Tumors Research GroupSemmelweis UniversityBudapestHungary

Personalised recommendations