Advertisement

Diabetologia

, Volume 62, Issue 3, pp 485–493 | Cite as

Reduced skeletal-muscle perfusion and impaired ATP release during hypoxia and exercise in individuals with type 2 diabetes

  • Martin B. Groen
  • Trine A. Knudsen
  • Stine H. Finsen
  • Bente K. Pedersen
  • Ylva Hellsten
  • Stefan P. MortensenEmail author
Article

Abstract

Aims/hypothesis

Plasma ATP is a potent vasodilator and is thought to play a role in the local regulation of blood flow. Type 2 diabetes is associated with reduced tissue perfusion. We aimed to examine whether individuals with type 2 diabetes have reduced plasma ATP concentrations compared with healthy control participants (case–control design).

Methods

We measured femoral arterial and venous plasma ATP levels with the intravascular microdialysis technique during normoxia, hypoxia and one-legged knee-extensor exercise (10 W and 30 W) in nine participants with type 2 diabetes and eight control participants. In addition, we infused acetylcholine (ACh), sodium nitroprusside (SNP) and ATP into the femoral artery to assess vascular function and ATP signalling.

Results

Individuals with type 2 diabetes had a lower leg blood flow (LBF; 2.9 ± 0.1 l/min) compared with the control participants (3.2 ± 0.1 l/min) during exercise (p < 0.05), in parallel with lower venous plasma ATP concentration (205 ± 35 vs 431 ± 72 nmol/l; p < 0.05). During systemic hypoxia, LBF increased from 0.35 ± 0.04 to 0.54 ± 0.06 l/min in control individuals, whereas it did not increase (0.25 ± 0.04 vs 0.31 ± 0.03 l/min) in the those with type 2 diabetes and was lower than in the control individuals (p < 0.05). Hypoxia increased venous plasma ATP levels in both groups (p < 0.05), but the increase was higher in control individuals (90 ± 26 nmol/l) compared to those with type 2 diabetes (18 ± 5 nmol/l). LBF and vascular conductance were lower during ATP (0.15 and 0.4 μmol min−1 [kg leg mass]−1) and ACh (100 μg min−1 [kg leg mass]−1) infusion in individuals with type 2 diabetes compared with the control participants (p < 0.05), whereas there was no difference during SNP infusion.

Conclusions/interpretation

These findings demonstrate that individuals with type 2 diabetes have lower plasma ATP concentrations during exercise and hypoxia compared with control individuals, and this occurs in parallel with lower blood flow. Moreover, individuals with type 2 diabetes have a reduced vasodilatory response to infused ATP. These impairments in the ATP system are both likely to contribute to the reduced tissue perfusion associated with type 2 diabetes.

Trial registration

ClinicalTrials.gov NCT02001766.

Keywords

Exercise Human Metabolic physiology in vivo Microvascular disease 

Abbreviations

ACh

Acetylcholine

Kir

Inwardly rectifying potassium channels

LBF

Leg blood flow

LVC

Leg vascular conductance

MAP

Mean arterial pressure

NO

Nitric oxide

SNP

Sodium nitroprusside

Introduction

In the USA, 15% of the adult population (>20 years of age) have type 2 diabetes, while another 37% have impaired glucose tolerance [1]. Type 2 diabetes is associated with endothelial dysfunction and risk of cardiovascular complications, affecting organs such as the heart, kidneys and eyes, as well as the extremities, especially the lower limbs [2, 3, 4].

Skeletal muscle blood flow is tightly regulated to match O2 delivery with metabolic demand. This regulation mainly relies on locally derived vasoactive substances and neural vasoconstrictor activity [5, 6]. Individuals with type 2 diabetes have impaired endothelial function and a reduced vasodilatory reserve compared with healthy individuals [2]. Moreover, these individuals have been reported to have a lower blood flow at rest and during exercise [7, 8], potentially resulting in a mismatch between the rate of supply and demand of O2 and metabolites. Erythrocytes have been proposed to not only function as O2 carriers, but also as regulators of blood flow by release of ATP into the blood [9, 10]. Intraluminal ATP is a potent vasodilator that can evoke vasodilation in the leg vasculature to a similar extent as that observed during intense exercise [11]. In vitro studies have demonstrated that erythrocytes release ATP in response to stimuli, including hypoxia with and without hypercapnia [9, 12], reduced pH levels [9], mechanical deformation [13], shear stress [14] and an increased temperature [15]. In vitro studies also suggest that, in contrast with erythrocytes from healthy individuals, erythrocytes from those with type 2 diabetes do not release ATP when exposed to low oxygen tension, despite similar levels of intracellular ATP [16, 17].

Intraluminal ATP can induce vasodilation by activating endothelial P2Y receptors [18, 19], resulting in an increased formation of vasoactive substances, such as nitric oxide (NO) and prostacyclin [18, 20], and by activation of inwardly rectifying potassium channels (Kir) [21]. Moreover, intraluminal ATP can blunt sympathetic vasoconstriction (functional sympatholysis) [11, 22, 23]. Individuals with type 2 diabetes have been shown to have a reduced vasodilatory response to arterially infused ATP [24], although this finding has not been consistent [25]. A reduced vasodilatory response to infused ATP does not appear to be related to an altered receptor distribution [24], but could be caused by altered receptor sensitivity and/or endothelium dysfunction, resulting in impaired formation of downstream signalling substances.

In healthy individuals, plasma ATP levels increase during exercise and hypoxia [10, 26] and this increase has been shown to be attenuated in the elderly [27]. Human studies have reported large variations in plasma ATP levels [28], which are likely due to differences in the treatment of blood samples, the short half-life of ATP and the continuous release and degradation of ATP in blood samples. To avoid these confounding factors, we have developed a method using intravascular microdialysis, which allows for in vivo separation of ATP from plasma by diffusion [26]. Given that the occurrence of vascular complications in type 2 diabetes is most common in the lower limbs, it is of clinical relevance to determine ATP release and signalling in the leg vasculature.

The purpose of this study was to: (1) examine if individuals with type 2 diabetes have altered plasma ATP levels during resting conditions and in response to increased metabolic demand, compared with healthy individuals; and (2) investigate whether ATP release in response to hypoxia is altered in those with type 2 diabetes, compared with healthy individuals. To accomplish this, we combined the intravascular microdialysis technique with the one-legged knee-extensor exercise model and reduced inspiratory O2 fraction and performed arterial infusions of known vasodilators. We hypothesised that ATP release in response to hypoxia and exercise would be impaired in participants with type 2 diabetes, in parallel with reduced leg blood flow (LBF), as compared with healthy individuals.

Methods

Participants

Nine individuals diagnosed with type 2 diabetes and eight healthy control participants were included in this study (Table 1). Participants were recruited by advertisements in local newspapers (individuals with type 2 diabetes and control participants) and from the Rigshospitalet and Odense University Hospital patient database (patients with type 2 diabetes only). Exclusion criteria were known ischaemic/non-ischaemic heart disease, claudicatio intermittens, unstable angina pectoris, unstable diabetes (change in medication during study period), diabetic retinopathy, nephropathy, severe neuropathy (severely affected sensation), kidney disease, angiopathy (previous or current foot ulcers), hypertension (>140/90 mmHg), use of β-blockers, pregnancy or giving birth within the last 3 months, surgery within the last 6 months, excessive alcohol intake, or smoking. After initial screening, 22 individuals (11 healthy and 11 with type 2 diabetes) were invited to the hospital for the pre-experimental day. Three healthy control participants and two individuals with type 2 diabetes were subsequently excluded as they failed to meet the inclusion criteria (tobacco use, n = 1; hypertension, n = 3; unstable diabetes, n = 1).
Table 1

Participant characteristics

Variable

Control

Type 2 diabetes

p

Participants (n)

8

9

 

 Male

5

7

 

 Female

3

2

 

Age (years)

47 ± 6

51 ± 4

0.17

Time since diagnosis (years)

8 ± 3

 

Body composition

 Weight (kg)

77 ± 11

84 ± 13

0.27

 Height (m)

1.73 ± 0.08

1.74 ± 0.09

0.87

 BMI (kg/m2)

26 ± 3

27 ± 2

0.21

 Total body fat (%)

29.9 ± 10.2

27.5 ± 7.4

0.63

\( \dot{V}{\mathrm{O}}_{2\mathrm{peak}} \)

 Absolute (l/min)

2.74 ± 0.99

2.80 ± 0.65

0.89

 Relative (ml kg−1 min−1)

35 ± 10

34 ± 8

0.74

Peak workload (W)a

48 ± 17

45 ± 17

0.71

Lipids (mmol/l)

 Total cholesterol

4.9 ± 1.1

4.4 ± 1.1

0.42

 HDL-cholesterol

1.6 ± 0.2

1.1 ± 0.4

0.01

 LDL-cholesterol

2.9 ± 0.9

2.7 ± 1.0

0.59

 Triacylglycerols

1.1 ± 0.8

1.6 ± 0.8

0.18

Glycaemic control

 HbA1c (mmol/mol)

34 ± 2

51 ± 10

<0.001

 HbA1c (%)

5.3 ± 0.2

6.8 ± 0.9

<0.001

 Plasma glucose (mmol/l)

5.2 ± 0.3

8.8 ± 3.7

0.01

Blood pressure (mmHg)

 Systolic

126 ± 13

139 ± 11

0.06

 Diastolic

79 ± 10

86 ± 11

0.19

Glucose-lowering medication (n)

 Metformin

6

 

 DDP-4 inhibitor

2

 

 Sulfonylurea

1

 

 SGLT-2-inhibitor

1

 

 GLP-1 analogues

1

 

Values are expressed as means ± SD or n

aMeasured on one-legged knee-extensor

DDP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; SGLT-2, sodium−glucose cotransporter 2; \( \dot{V}{\mathrm{O}}_{2\mathrm{peak}} \), peak pulmonary oxygen uptake

Participants were informed verbally and in writing of the potential risks and discomforts associated with the experiments before giving informed, written consent to participate. The study was approved by the Ethics Committee of the Capital Region (H-2011-070) and conducted in accordance with the Declaration of Helsinki. The study is registered with ClinicalTrials.gov as NCT02001766, and the part of the study reported here is described as ‘project 1’ on the ClinicalTrials.gov record.

Pre-experimental day

The pre-experimental day consisted of an ECG (MAC800, GE Medical systems, Milwaukee, WI, USA), blood screening (glucose, HbA1c, lipids, markers of haematology, thyroid, kidney and liver function; BD, REF 368654, Franklin Lakes, NJ, USA), blood pressure measuring (Omron M6 comfort, Kyoto, Japan), exercise testing and a dual-energy x-ray absorptiometry (DEXA)-scan (Lunar Prodigy Advance; GE Healthcare, Madison, WI, USA). To accustom participants to the exercise model used in this study and to determine the maximum workload, an incremental test to exhaustion (10 min at 6 W and 6 W min−1 thereafter) was performed using the one-legged knee–extensor exercise model. Peak pulmonary oxygen uptake (\( \dot{V}{\mathrm{O}}_{2\mathrm{peak}} \)) was also measured (Cosmed, Rome, Italy) during an incremental cycling (Lode Excalibur, Groningen, the Netherlands) test (10 min at 50–100 W and 25 W min−1 thereafter) to exhaustion.

Experimental protocol

Participants arrived at the laboratory at 08:30 h after a light standardised breakfast. Participants refrained from caffeine, exercise and glucose-lowering medication 24 h prior to the experiment. Catheters were inserted at a level just proximal to the bifurcation of the common femoral artery (ultrasound guided) using the Seldinger technique [29] under local anaesthesia (Xylocain, 10 mg/ml, AstraZeneca, Mölndal, Sweden; electronic supplementary material [ESM] Fig. 1). Three catheters were placed in the experimental leg. One catheter (20GA, Arrow International, Reading, PA, USA) was placed in the femoral artery and advanced 10 cm in the proximal direction. This catheter was used for blood pressure measurement, blood sampling and pharmacological infusions. A second catheter (20GA, Arrow International Inc. Reading, PA, USA) was placed in the femoral vein and advanced 10 cm in the proximal direction and was used for blood sampling and blood pressure measurement. A third catheter (18GA, Arrow International) was placed in the femoral vein and advanced 10 cm in the distal direction. A fourth catheter (18GA, Arrow International) was placed in the femoral artery of the non-experimental leg and advanced 10 cm in the proximal direction. In the distal femoral venous catheter and the arterial catheter in the non-experimental leg, a microdialysis probe (M Dialysis AB, Solna, Sweden) with a 10 mm membrane (20 kDa cut-off) was inserted. After 30 min of rest, the participants completed the following trials: (1) two bouts of 7 min one-leg knee-extensor exercise (60 repetitions per min) at 10 W and 30 W, respectively; (2) 7 min of rest during hypoxia (fraction of inspired oxygen [Fio2] = 12.5%); (3) acetylcholine (ACh) infusion (Miochol-E; Bausch + Lomb, Berlin, Germany): three stepwise 2.5 min infusions at 10, 25 and 100 μg min−1 [kg leg mass]−1; (4) ATP infusion (A7699; Sigma-Aldrich, St Louis, MO, USA diluted in isotonic saline [154 mmol/l NaCl]): three stepwise 2.5 min infusions at 0.04, 0.15 and 1.4 μmol min−1 [kg leg mass]−1; and (5) sodium nitroprusside (SNP) infusion (Nitropress, Hospira, Lake Forrest, IL, USA): 2.5 min infusion at 1.0 μg min−1 [kg leg mass]−1(ESM Fig. 2). The trials were separated by 20–30 min of rest. The exercise and hypoxia trials were always performed first (order not randomised), whereas the order of the infusion trials was randomised (by sealed envelope).

Arterial and venous microdialysis

Arterial and venous microdialysate samples were collected for 7 min before and during each trial, as well as during the 7 min recovery period after the exercise and hypoxia trial. The microdialysis probes were perfused at a rate of 5 μl/min with Ringer’s solution (Fresenius Kabi, Uppsala, Sweden). Dalteparin (25 U/ml; Fragmin; Pfizer, Ballerup, Denmark) was added to the perfusate to avoid blood clotting in the membrane. To determine the relative exchange of ATP over the dialysis membrane and to calculate the probe recovery, a small amount (2.7 nmol/l) of [2-3H]ATP (<300 Bq/ml) was added to the perfusate. Measurement of the [2-3H]ATP activity and ATP concentrations in perfusate (inflow) and dialysate (outflow), as well as calculation of probe recovery (relative loss) and plasma ATP concentration, was performed as previously described [26]. After the hypoxia trial, the arterial microdialysis probe was removed. Due to technical difficulties, microdialysis data was obtained in only 14 participants (n = 7 in the control group and n = 7 in the type 2 diabetes group). The analyser was blinded toward group assignment.

Leg haemodynamics and O2 variables

Leg blood flow was measured with Doppler ultrasound (Logic E9, GE Healthcare, Pittsburgh, PA, USA), as previously described [30]. The analyser was blinded toward group assignment. Heart rate and arterial and venous pressure were recorded via a data acquisition system (PowerLab 16/30, ADInstruments, Bella Vista, NSW, Australia) for later software analysis (Labchart 8, ADInstruments), and transducers positioned at the level of the heart (pressure monitoring kit, ref. T450217A; Edwards Lifesciences, Irvine, CA, USA). Blood samples were drawn: (1) before each trial; (2) during the 7 min of exercise and hypoxia (2.3 and 4.7 min); (3) during each step of ATP/ACh/SNP infusion (at 2 min after infusion); and (4) during the recovery period of the exercise and hypoxia trials (at 3.5 min). Blood samples were analysed using an ABL835 FLEX analyser (Radiometer, Copenhagen, Denmark). Mean arterial pressure (MAP) was calculated from the area under the arterial pressure curve over 8–16 heart cycles. Leg vascular conductance (LVC) was calculated as the quotient between LBF and MAP. Arterial and venous blood O2 content was calculated as content O2 = ([Hb] × O2 saturation × 1.34) + (PaO2 × 0.003). Leg O2 delivery was calculated as the product of LBF and arterial O2 content. Leg O2 uptake (\( \dot{V}{\mathrm{O}}_2 \)) was calculated as the product of LBF and the difference in O2 content between corresponding arterial and venous blood samples.

Statistical analysis

A one-way repeated measures ANOVA was performed to test significance of treatments within control participants and those with type 2 diabetes. The difference between the groups was tested using a two-way ANOVA. If found to be significant using an F test, pair-wise differences were identified using Tukey’s honestly significant difference (HSD) post hoc test. The significance level was set at p < 0.05 and a tendency was noted if 0.05 ≤ p < 0.10. Data are presented as means ± SEM unless otherwise stated.

Results

Participant characteristics

There were no differences in baseline characteristics between groups, except for HDL-cholesterol, which was lower in individuals with type 2 diabetes compared with controls, and variables of glycaemic control were higher in these participants (Table 1).

Leg haemodynamics and plasma ATP concentration during exercise

LBF and LVC increased in both the control and type 2 diabetes groups during the 10 W and 30 W exercise, but were higher in the control group compared with the type 2 diabetes group during both workloads (LBF: 2.1 ± 0.0 vs 1.8 ± 0.0 l/min at 10 W and 3.2 ± 0.1 vs 2.9 ± 0.1 l/min at 30 W in the control and the type 2 diabetes group, respectively. LVC: 19 ± 1 vs 14 ± 1 ml min−1 mmHg−1 at 10 W and 28 ± 2 vs 20 ± 2 min−1 mmHg−1 at 30 W, respectively; Fig. 1a, b; p < 0.05). Compared with baseline, MAP increased during the 10 W exercise in individuals with type 2 diabetes and during 30 W exercise in both groups (p < 0.05). During the 10 W exercise, MAP was higher in the individuals with type 2 diabetes compared with the control participants; although not significant, it also tended to be higher at baseline, during the 30 W exercise and in the recovery period (p = 0.07–0.09; ESM Table 1). Leg O2 delivery was lower at 30 W (p < 0.05) and tended to be (non-significantly) lower at 10 W (p = 0.09) in individuals with type 2 diabetes compared with control participants (ESM Table 2). There was no difference between groups in partial pressure of oxygen (Po2), haemoglobin, O2 saturation, \( \dot{V}{\mathrm{O}}_2 \) or lactate, whereas glucose was higher in all conditions in those with type 2 diabetes, as compared with controls (p < 0.05).
Fig. 1

LBF (a), LVC (b), femoral arterial plasma ATP (c) and femoral venous plasma ATP (d) at baseline (BL), and during exercise (10 W and 30 W) and the recovery (Recov) from exercise in the type 2 diabetes and control groups. Data are means ± SEM. The key in (c) applies to all figure parts. *p < 0.05 vs control; p < 0.05 vs baseline within group

Compared with baseline, arterial plasma ATP levels increased during the 10 W and 30 W exercise in the control participants (62 ± 7, 96 ± 10 and 114 ± 10 nmol/l at baseline, 10 W and 30 W, respectively; p < 0.05) and during the 30 W exercise in those with type 2 diabetes (76 ± 10 and 155 ± 18 nmol/l at baseline and 30 W, respectively; p < 0.05), returning to baseline during the recovery period in both groups (Fig. 1c). Venous plasma ATP levels increased from baseline to 30 W in both the participants with type 2 diabetes (84 ± 7 nmol/l at baseline to 205 ± 35 nmol/l at 30 W) and the control (87 ± 10 nmol/l at baseline to 431 ± 72 nmol/l at 30 W; p < 0.05) group, returning to baseline during the recovery period (Fig. 1d). Individuals with type 2 diabetes had lower venous ATP during the 10 W and 30 W exercise compared with control individuals and lower arterial plasma ATP during the recovery period (p < 0.05) (Fig. 1c, d). They also had a non-significant tendency towards lower arterial plasma ATP during the 10 W and 30 W exercise (p = 0.07 and p = 0.05, respectively) compared with control participants.

Leg haemodynamics, heart rate and plasma ATP concentration during hypoxia

Compared with baseline, LBF increased during hypoxia in control participants (0.35 ± 0.04 to 0.54 ± 0.06 l/min at baseline and hypoxia, respectively; p < 0.05), whereas it did not change in those with type 2 diabetes (0.25 ± 0.04 vs 0.31 ± 0.03 l/min, respectively; Fig. 2a). In both groups, hypoxia did not change LVC from baseline levels (Fig. 2b), whereas MAP and heart rate increased (ESM Table 1; p < 0.05). LBF and LVC were lower in those with type 2 diabetes, both during baseline conditions and during hypoxia, compared with control participants (LVC: 2.3 ± 0.4 vs 3.7 ± 0.4 ml min−1 mmHg−1 [kg leg mass]−1 at baseline and 2.7 ± 0.4 vs 5.3 ± 0.6 ml min−1 mmHg−1 [kg leg mass]−1 during hypoxia in the type 2 diabetes and control group, respectively; p < 0.05). There were no differences between groups in blood gas variables before, during or after hypoxia (ESM Table 2). Leg O2 delivery tended to be higher (although not significant) in the control individuals, as compared with the type 2 diabetes group during baseline conditions (p = 0.09) and was higher in the control participants during hypoxia (ESM Table 2; p < 0.05).
Fig. 2

LBF (a), LVC (b), femoral arterial plasma ATP (c) and femoral venous plasma ATP (d) during baseline, hypoxia and in the recovery from hypoxia in the type 2 diabetes and control groups. Data are means ± SEM. The key in (c) applies to all figure parts. *p < 0.05 vs control; p < 0.05 vs baseline within group

Arterial plasma ATP levels did not change from baseline to during hypoxia in both groups and there was no difference between groups (Fig. 2c). On the other hand, venous plasma ATP levels increased from baseline in both the type 2 diabetes (83 ± 6 nmol/l at baseline to 101 ± 5 nmol/l during hypoxia) and control (104 ± 9 nmol/l to 194 ± 23 nmol/l) groups during hypoxia (p < 0.05) (Fig. 2d). However, this increase was smaller in those with type 2 diabetes (18 ± 5 nmol/l) compared with control (90 ± 26 nmol/l) participants and the level of venous plasma ATP during hypoxia was different between the two groups (p < 0.05). In the recovery period, venous plasma ATP in the control group tended to be non-significantly higher compared with baseline values (p = 0.06) and was significantly higher in the type 2 diabetes group (p < 0.05; Fig. 2d).

Leg haemodynamics during ACh, SNP and ATP infusion

During ACh infusion, LVC increased in both groups vs baseline (ESM Table 3), but tended to be reduced (although non significantly; p = 0.06) at 25 μg min−1 [kg leg mass]−1 (the middle dose) and was significantly reduced at 100 μg min−1 [kg leg mass]−1 in the type 2 diabetes group, compared with control individuals (p < 0.05; Fig. 3a; ESM Table 3). During SNP infusion, LVC increased in both groups (p < 0.05; ESM Table 3) and there was no difference between groups (ESM Fig. 3b). During ATP infusion, LVC increased in both groups vs baseline (ESM Table 4), but values were lower in those with type 2 diabetes compared with control participants at the two highest doses (0.15 and 0.4 μmol min−1 [kg leg mass]−1; p < 0.05; ESM Table 4; Fig. 3c).
Fig. 3

Changes from baseline in LVC during infusion of ACh (a), SNP (b) and ATP (c) compared with baseline. Data are means ± SEM. The key in (b) applies to all figure parts. *p < 0.05 vs control

Discussion

The main findings of the present study were: (1) during exercise, individuals with type 2 diabetes had lower LBF and LVC in the exercising leg in parallel with a lower femoral venous plasma ATP compared with healthy participants; (2) during hypoxia, femoral venous plasma ATP was lower in individuals with type 2 diabetes compared with control individuals and hypoxia increased LBF in control individuals only; (3) the type 2 diabetes group had a lower vasodilatory response to exogenous ATP and ACh. Collectively, these findings suggest that reduced plasma ATP levels in response to exercise and hypoxia in the type 2 diabetes group, compared with the control group, could contribute to the impaired skeletal muscle perfusion and O2 delivery that occur in individuals with type 2 diabetes.

Haemodynamic response to exercise in type 2 diabetes

LBF and O2 delivery during exercise were lower in the individuals with type 2 diabetes compared with the control individuals, which is in agreement with previous findings [7, 31]. The lower LBF in the individuals with type 2 diabetes was accompanied by a reduced plasma ATP during exercise. In comparing the increase in venous plasma ATP during exercise at 30 W between the two groups, an approximate 2.5-fold increase was observed in individuals with type 2 diabetes, whilst a ~5-fold increase was observed in control participants. The increase in venous plasma ATP from rest to 30 W is in accordance with our previous findings from studies that used the intravascular microdialysis technique to determine plasma ATP [26], as well as other [10, 27, 32, 33, 34, 35], but not all [11, 36], previous studies of the exercising leg and forearm.

In contrast to our previous findings [26], we also observed a small increase in arterial plasma ATP levels during exercise in both groups, as compared with baseline. This increase in arterial plasma ATP could be due to increased temperature during exercise [34, 37] resulting in ATP release from erythrocytes [15].

Our results demonstrate that individuals with type 2 diabetes have impaired regulation of LBF coupled with reduced plasma ATP, compared with control individuals, when presented with an increased metabolic demand.

Haemodynamic response to hypoxia in type 2 diabetes

During hypoxia, venous plasma ATP was increased in both groups relative to baseline, but in the participants with type 2 diabetes, this increase was markedly lower (~20% increase) vs control participants (~85% increase). While the observed increase in venous plasma ATP during hypoxia is in line with some in vivo studies [26, 27], not all studies have found increased plasma ATP levels during systemic hypoxia in resting healthy participants [10]. It has been shown that endothelial cells can release ATP when exposed to increased shear stress [38] and that they release a larger amount of ATP when concomitantly exposed to shear stress and hypoxia, but not when they are exposed to hypoxia alone [39]. We did not observe an increase in LBF in the individuals with type 2 diabetes during hypoxia; therefore, increased endothelial release of ATP in response to shear stress is unlikely to contribute to the increase from baseline in venous plasma ATP observed in this group. Both groups showed a similar decrease in arterial oxygen saturation from baseline during hypoxia, with no increase in arterial plasma ATP, suggesting that ATP release from erythrocytes was evoked by the offloading of O2 from haemoglobin [9, 10, 40].

Haemolysis has been suggested to be a mechanism for ATP release in erythrocyte suspensions [41], but given that ATP and erythrocytes were separated in vivo in the present study, this cannot explain the observed differences between the groups. An alternative possibility for the lower venous plasma ATP concentration during hypoxia (and exercise) in the type 2 diabetes group is increased ATP degradation and reuptake, but this seems unlikely given that baseline ATP levels were not different between the groups. These observations, therefore, suggest that the lower femoral venous ATP levels in individuals with type 2 diabetes was associated with impaired ATP release in response to hypoxia compared with control participants [16, 42, 43].

ATP responsiveness

The vasodilator response to arterially infused ATP was lower in individuals with type 2 diabetes compared with the control group. In line with this observation, a previous study found that a higher dose of ATP was needed to achieve the same hyperaemic response in individuals with type 2 diabetes compared with healthy participants [24]. ATP can induce vasodilation both through activation of P2Y receptors on the endothelium, resulting in the formation of vasodilators, including NO and prostacyclin [18, 20], by activation of Kir [21] and by reducing the effect of sympathetic activity [11]. Although it is not possible to discern which vasodilator pathway(s) caused the reduced ATP responsiveness in type 2 diabetes, the finding that ACh-, but not SNP-induced vasodilation was lower in the type 2 diabetes vs control group suggests that a reduced formation of endothelial relaxation factors upon ATP stimulation could play a role in the lower vasodilator response observed in the individuals with type 2 diabetes. In line with this, a similar ATP response was observed in participants with type 2 diabetes without endothelial dysfunction as with control individuals [25].

The findings from this study suggest that impaired ATP release in individuals with type 2 diabetes during exercise and hypoxia, combined with the attenuated vasodilatory response of intraluminal ATP, is likely to contribute to the impaired hyperaemic response observed in the individuals with type 2 diabetes [7, 31]. During hypoxia, LBF was ~50% lower in the individuals with type 2 diabetes compared with control participants whereas it was 10–12% lower during exercise. In contracting skeletal muscle, blood flow is regulated by a complex interaction between multiple vasodilator substances, including ATP, NO and prostacyclin [6]; hence, the less pronounced impairment in blood flow during exercise vs hypoxia most likely reflects compensatory upregulation of other vasodilator systems [5]. A unique property of intraluminal ATP is that it can also override local sympathetic vasoconstrictor activity (termed ‘functional sympatholysis’) [11] and this mechanism is thought to play an important role in matching local O2 supply with demand [23]. Given the lower intraluminal ATP levels in the participants with type 2 diabetes, this mechanism may also be impaired in these individuals.

Conclusions and clinical perspective

In conclusion, type 2 diabetes is associated with a lower increase in venous plasma ATP in response to exercise and hypoxia compared with control participants, in parallel with a lower blood flow during these conditions. Moreover, individuals with type 2 diabetes have a reduced vasodilatory response to infused ATP. The association between lower plasma ATP levels, lower ATP sensitivity and impaired blood flow regulation suggests that these impairments in ATP release and signalling are likely to contribute to the reduced tissue perfusion associated with type 2 diabetes.

Vascular complications have a major impact on the quality of life of those with type 2 diabetes and, taking into account the increased prevalence of type 2 diabetes, it contributes significantly to the burden on the healthcare systems. Considering the potency of ATP as a vasodilator, the impaired ATP responsiveness and signalling observed in individuals with type 2 diabetes in this study is likely to have major clinical implications. Using erythrocytes from individuals with type 2 diabetes, in vitro studies have demonstrated that diabetes-associated deficiencies in erythrocytes to release ATP when exposed to low O2 tension can be rescued by pretreatment with a phosphodiesterase 3-inhibitor [43] or by achieving specific ratios of insulin:C-peptide [42]. Investigations into whether these, or other treatments, can rescue the impaired ATP release and normalise tissue perfusion in patients with type 2 diabetes are, therefore, warranted.

Notes

Contribution statement

MBG was responsible for acquisition of data, analysis and interpretation of the data and drafting the manuscript. TAK and SHF were responsible for acquisition of data, analysis and interpretation of the data and revision of the manuscript. BKP analysed and interpretated the data and revised the manuscript. YH was responsible for conception and design, acquisition of data, analysis and interpretation of the data and revision of the manuscript. SPM was responsible for conception and design, acquisition of data, analysis and interpretation of the data and drafting the manuscript. All authors approved the final version of the manuscript. SPM is responsible for the integrity of the data.

Funding

This study was supported by the Capitol Region of Denmark. The Centre for Physical Activity Research (CFAS) is supported by a grant from TrygFonden. During the study period, the Centre of Inflammation and Metabolism (CIM) was supported by a grant from the Danish National Research Foundation (DNRF55). CIM/CFAS is a member of DD2 - the Danish Center for Strategic Research in Type 2 Diabetes (the Danish Council for Strategic Research, grant no. 09-067009 and 09-075724).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

125_2018_4790_MOESM1_ESM.pdf (855 kb)
ESM 1 (PDF 854 kb)

References

  1. 1.
    Benjamin EJ, Virani SS, Callaway CW et al (2018) Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492.  https://doi.org/10.1161/CIR.0000000000000558 CrossRefPubMedGoogle Scholar
  2. 2.
    Tooke JE (1995) Microvascular function in human diabetes. A physiological perspective. Diabetes 44(7):721–726.  https://doi.org/10.2337/diab.44.7.721 CrossRefPubMedGoogle Scholar
  3. 3.
    Tabit CE, Chung WB, Hamburg NM, Vita JA (2010) Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord 11(1):61–74.  https://doi.org/10.1007/s11154-010-9134-4 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Creager MA, Luscher TF, Cosentino F, Beckman JA (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation 108(12):1527–1532.  https://doi.org/10.1161/01.CIR.0000091257.27563.32 CrossRefPubMedGoogle Scholar
  5. 5.
    Hellsten Y, Nyberg M, Jensen LG, Mortensen SP (2012) Vasodilator interactions in skeletal muscle blood flow regulation. J Physiol 590(24):6297–6305.  https://doi.org/10.1113/jphysiol.2012.240762 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mortensen SP, Saltin B (2014) Regulation of the skeletal muscle blood flow in humans. Exp Physiol 99(12):1552–1558.  https://doi.org/10.1113/expphysiol.2014.081620 CrossRefPubMedGoogle Scholar
  7. 7.
    Kingwell BA, Formosa M, Muhlmann M, Bradley SJ, McConell GK (2003) Type 2 diabetic individuals have impaired leg blood flow responses to exercise. Diabetes Care 26(3):899–904.  https://doi.org/10.2337/diacare.26.3.899 CrossRefPubMedGoogle Scholar
  8. 8.
    Poitras VJ, Hudson RW, Tschakovsky ME (2018) Exercise intolerance in type 2 diabetes: is there a cardiovascular contribution? 124:1117–1139Google Scholar
  9. 9.
    Ellsworth ML, Forrester T, Ellis CG, Dietrich HH (1995) The erythrocyte as a regulator of vascular tone. Am J Physiol 269:H2155–H2161PubMedGoogle Scholar
  10. 10.
    González-Alonso J, Olsen DB, Saltin B (2002) Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP. CircRes 91:1046–1055Google Scholar
  11. 11.
    Rosenmeier JB, Hansen J, González-Alonso J (2004) Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle. J Physiol 558:351–365CrossRefGoogle Scholar
  12. 12.
    Bergfeld GR, Forrester T (1992) Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res 26(1):40–47.  https://doi.org/10.1093/cvr/26.1.40 CrossRefPubMedGoogle Scholar
  13. 13.
    Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ (1996) ATP: the red blood cell link to NO and local control of the pulmonary circulation. Am J Physiol 271:H2717–H2722PubMedGoogle Scholar
  14. 14.
    Wan J, Ristenpart WD, Stone HA (2008) Dynamics of shear-induced ATP release from red blood cells. Proc Natl Acad Sci U S A 105(43):16432–16437.  https://doi.org/10.1073/pnas.0805779105 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kalsi KK, Gonzalez-Alonso J (2012) Temperature-dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion. Exp Physiol 97(3):419–432.  https://doi.org/10.1113/expphysiol.2011.064238 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sprague RS, Stephenson AH, Bowles EA, Stumpf MS, Lonigro AJ (2006) Reduced expression of Gi in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release. Diabetes 55(12):3588–3593.  https://doi.org/10.2337/db06-0555 CrossRefPubMedGoogle Scholar
  17. 17.
    Sprague RS, Goldman D, Bowles EA et al (2010) Divergent effects of low-O2 tension and iloprost on ATP release from erythrocytes of humans with type 2 diabetes: implications for O2 supply to skeletal muscle. Am J Physiol Heart Circ Physiol 299(2):H566–H573.  https://doi.org/10.1152/ajpheart.00430.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mortensen SP, Gonzalez-Alonso J, Bune LT, Saltin B, Pilegaard H, Hellsten Y (2009) ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine. Am J Physiol Regul Integr Comp Physiol 296(4):R1140–R1148.  https://doi.org/10.1152/ajpregu.90822.2008 CrossRefPubMedGoogle Scholar
  19. 19.
    Mortensen SP, Gonzalez-Alonso J, Nielsen JJ, Saltin B, Hellsten Y (2009) Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion. J Appl Physiol 107(6):1757–1762.  https://doi.org/10.1152/japplphysiol.00638.2009 CrossRefPubMedGoogle Scholar
  20. 20.
    Crecelius AR, Kirby BS, Richards JC et al (2011) Mechanisms of ATP-mediated vasodilation in humans: modest role for nitric oxide and vasodilating prostaglandins. Am J Physiol Heart Circ Physiol 301(4):H1302–H1310.  https://doi.org/10.1152/ajpheart.00469.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Crecelius AR, Kirby BS, Luckasen GJ, Larson DG, Dinenno FA (2012) ATP-mediated vasodilatation occurs via activation of inwardly-rectifying potassium channels in humans. J Physiol 590:5349–5359CrossRefGoogle Scholar
  22. 22.
    Kirby BS, Voyles WF, Carlson RE, Dinenno FA (2008) Graded sympatholytic effect of exogenous ATP on postjunctional alpha-adrenergic vasoconstriction in the human forearm: implications for vascular control in contracting muscle. J Physiol 586:4305–4316CrossRefGoogle Scholar
  23. 23.
    Saltin B, Mortensen SP (2012) Inefficient functional sympatholysis is an overlooked cause of malperfusion in contracting skeletal muscle. J Physiol 590(24):6269–6275.  https://doi.org/10.1113/jphysiol.2012.241026 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Thaning P, Bune LT, Hellsten Y, Pilegaard H, Saltin B, Rosenmeier JB (2010) Attenuated purinergic receptor function in patients with type 2 diabetes. Diabetes 59(1):182–189.  https://doi.org/10.2337/db09-1068 CrossRefPubMedGoogle Scholar
  25. 25.
    Thaning P, Bune LT, Zaar M, Saltin B, Rosenmeier JB (2011) Functional sympatholysis during exercise in patients with type 2 diabetes with intact response to acetylcholine. Diabetes Care 34(5):1186–1191.  https://doi.org/10.2337/dc10-2129 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mortensen SP, Thaning P, Nyberg M, Saltin B, Hellsten Y (2011) Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique. J Physiol 589(7):1847–1857.  https://doi.org/10.1113/jphysiol.2010.203034 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kirby BS, Crecelius AR, Voyles WF, Dinenno FA (2012) Impaired skeletal muscle blood flow control with advancing age in humans: attenuated ATP release and local vasodilation during erythrocyte deoxygenation. Circ Res 111(2):220–230.  https://doi.org/10.1161/CIRCRESAHA.112.269571 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gorman MW, Feigl EO, Buffington CW (2007) Human plasma ATP concentration. ClinChem 53:318–325Google Scholar
  29. 29.
    Seldinger SI (1953) Catheter replacement of the needle in percutaneous arteriography: a new technique. Acta Radiol 39(5):368–376.  https://doi.org/10.3109/00016925309136722 CrossRefPubMedGoogle Scholar
  30. 30.
    Nyberg M, Jensen LG, Thaning P, Hellsten Y, Mortensen SP (2012) Role of nitric oxide and prostanoids in the regulation of leg blood flow and blood pressure in humans with essential hypertension: effect of high-intensity aerobic training. J Physiol 590(6):1481–1494.  https://doi.org/10.1113/jphysiol.2011.225136 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lalande S, Gusso S, Hofman PL, Baldi JC (2008) Reduced leg blood flow during submaximal exercise in type 2 diabetes. Med Sci Sports Exerc 40(4):612–617.  https://doi.org/10.1249/MSS.0b013e318161aa99 CrossRefPubMedGoogle Scholar
  32. 32.
    Forrester T, Lind AR (1969) Identification of adenosine triphosphate in human plasma and the concentration in the venous effluent of forearm muscles before, during and after sustained contractions. J Physiol 204(2):347–364.  https://doi.org/10.1113/jphysiol.1969.sp008917 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yegutkin GG, Samburski SS, Mortensen SP, Jalkanen S, Gonzalez-Alonso J (2007) Intravascular ADP and soluble nucleotidases contribute to acute prothrombotic state during vigorous exercise in humans. J Physiol 579:553–564CrossRefGoogle Scholar
  34. 34.
    Gonzalez-Alonso J, Calbet JA, Boushel R et al (2015) Blood temperature and perfusion to exercising and non-exercising human limbs. Exp Physiol 100(10):1118–1131.  https://doi.org/10.1113/EP085383 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kirby BS, Crecelius AR, Richards JC, Dinenno FA (2013) Sources of intravascular ATP during exercise in humans: critical role for skeletal muscle perfusion. Exp Physiol 98(5):988–998.  https://doi.org/10.1113/expphysiol.2012.071555 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    González-Alonso J, Mortensen SP, Dawson EA, Secher NH, Damsgaard R (2006) Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: role of erythrocyte count and oxygenation state of haemoglobin. J Physiol 572:295–305CrossRefGoogle Scholar
  37. 37.
    Pearson J, Low DA, Stohr E et al (2011) Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow. Am J Physiol Regul Integr Comp Physiol 300(3):R663–R673.  https://doi.org/10.1152/ajpregu.00662.2010 CrossRefPubMedGoogle Scholar
  38. 38.
    Milner P, Kirkpatrick KA, Ralevic V, Toothill V, Pearson J, Burnstock G (1990) Endothelial cells cultured from human umbilical vein release ATP, substance P and acetylcholine in response to increased flow. Proc R Soc Lond Ser B Biol Sci 241(1302):245–248.  https://doi.org/10.1098/rspb.1990.0092 CrossRefGoogle Scholar
  39. 39.
    Bodin P, Burnstock G (1995) Synergistic effect of acute hypoxia on flow-induced release of ATP from cultured endothelial cells. Experientia 51(3):256–259.  https://doi.org/10.1007/BF01931108 CrossRefPubMedGoogle Scholar
  40. 40.
    Jagger JE, Bateman RM, Ellsworth ML, Ellis CG (2001) Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation. Am J Physiol Heart Circ Physiol 280(6):H2833–H2839.  https://doi.org/10.1152/ajpheart.2001.280.6.H2833 CrossRefPubMedGoogle Scholar
  41. 41.
    Sikora J, Orlov SN, Furuya K, Grygorczyk R (2014) Hemolysis is a primary ATP-release mechanism in human erythrocytes. Blood 124(13):2150–2157.  https://doi.org/10.1182/blood-2014-05-572024 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Richards JP, Yosten GL, Kolar GR et al (2014) Low O2-induced ATP release from erythrocytes of humans with type 2 diabetes is restored by physiological ratios of C-peptide and insulin. Am J Physiol Regul Integr Comp Physiol 307(7):R862–R868.  https://doi.org/10.1152/ajpregu.00206.2014 CrossRefPubMedGoogle Scholar
  43. 43.
    Sprague RS, Bowles EA, Achilleus D, Stephenson AH, Ellis CG, Ellsworth ML (2011) A selective phosphodiesterase 3 inhibitor rescues low Po2-induced ATP release from erythrocytes of humans with type 2 diabetes: implication for vascular control. Am J Physiol Heart Circ Physiol 301(6):H2466–H2472.  https://doi.org/10.1152/ajpheart.00729.2011 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
  2. 2.Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, University of Copenhagen, RigshospitaletCopenhagenDenmark
  3. 3.Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations