Advertisement

Diabetologia

pp 1–14 | Cite as

DEXI, a candidate gene for type 1 diabetes, modulates rat and human pancreatic beta cell inflammation via regulation of the type I IFN/STAT signalling pathway

  • Reinaldo S. Dos Santos
  • Laura Marroqui
  • Teresa Velayos
  • Ane Olazagoitia-Garmendia
  • Amaia Jauregi-Miguel
  • Ainara Castellanos-Rubio
  • Decio L. Eizirik
  • Luis Castaño
  • Izortze Santin
Article

Abstract

Aims/hypothesis

The initial stages of type 1 diabetes are characterised by an aberrant islet inflammation that is in part regulated by the interaction between type 1 diabetes susceptibility genes and environmental factors. Chromosome 16p13 is associated with type 1 diabetes and CLEC16A is thought to be the aetiological gene in the region. Recent gene expression analysis has, however, indicated that SNPs in CLEC16A modulate the expression of a neighbouring gene with unknown function named DEXI, encoding dexamethasone-induced protein (DEXI). We therefore evaluated the role of DEXI in beta cell responses to ‘danger signals’ and determined the mechanisms involved.

Methods

Functional studies based on silencing or overexpression of DEXI were performed in rat and human pancreatic beta cells. Beta cell inflammation and apoptosis, driven by a synthetic viral double-stranded RNA, were evaluated by real-time PCR, western blotting and luciferase assays.

Results

DEXI-silenced beta cells exposed to a synthetic double-stranded RNA (polyinosinic:polycytidylic acid [PIC], a by-product of viral replication) showed reduced activation of signal transducer and activator of transcription (STAT) 1 and lower production of proinflammatory chemokines that was preceded by a reduction in IFNβ levels. Exposure to PIC increased chromatin-bound DEXI and IFNβ promoter activity. This effect on IFNβ promoter was inhibited in DEXI-silenced beta cells, suggesting that DEXI is implicated in the regulation of IFNβ transcription. In a mirror image of knockdown experiments, DEXI overexpression led to increased levels of STAT1 and proinflammatory chemokines.

Conclusions/interpretation

These observations support DEXI as the aetiological gene in the type 1 diabetes-associated 16p13 genomic region, and provide the first indication of a link between this candidate gene and the regulation of local antiviral immune responses in beta cells. Moreover, our results provide initial information on the function of DEXI.

Keywords

DEXI Inflammation Pancreatic beta cell Susceptibility gene Type 1 diabetes Type I IFNs Viral infection 

Abbreviations

CCL5

Chemokine (C-C motif) ligand 5

CVB5

Coxsackievirus B5

DEXI

Dexamethasone-induced protein

dsRNA

Double-stranded RNA

eQTL

Expression quantitative trait locus

ISRE

Interferon-stimulated response element

JAK

Janus kinase

PIC

Polyinosinic:polycytidylic acid

RT-PCR

Real-time PCR

siRNA

Small interfering RNA

STAT

Signal transducer and activator of transcription

Notes

Acknowledgements

The authors are grateful to M. Pangerl, A. M. Musuaya, N. Pachera, Y. Cai and I. Millard of the ULB Center for Diabetes Research, Université Libre de Bruxelles, Belgium, for excellent technical support; J.-V. Turantzine of the ULB Center for Diabetes Research, Université Libre de Bruxelles, Belgium, for his help in the analysis of DEXI expression in human islet and Illumina samples; and the Flow Cytometry Facility of the Erasmus campus, Université Libre de Bruxelles, and C. Dubois for the cell sorting. They also thank P. Marchetti and L. Marselli from the Department of Clinical and Experimental Medicine at the University of Pisa (Pisa, Italy) for providing human pancreatic islets, I. Irastorza from the Pediatric Gastroenterology Service at the Cruces University Hospital (Barakaldo, Spain) for intestinal biopsy collection and the Immunogenetics Research Laboratory from the University of the Basque Country (Leioa, Spain) for sample processing.

Contribution statement

RSS, LM, TV, AOG, AJM and ACR researched data, and revised and edited the manuscript. DLE contributed to the design and interpretation of the experiments, and to discussion, and wrote, revised and edited the manuscript. LC contributed to interpretation of the experiments and discussion, and revised and edited the manuscript. IS contributed to the original idea, design and interpretation of experiments, researched data, contributed to discussion, and wrote, revised and edited the manuscript. All authors have read and approved the manuscript and given informed consent. IS the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Funding

This work was supported by a Research Project Grant from the Basque Department of Health (2015111068), a Research Grant from Fundación de la Sociedad Española de Diabetes (FSED), the Horizon 2020 Program T2Dsystems (GA667191) and the National Institute of Health–National Institute of Diabetes and Digestive and Kidney Diseases–Human Islet Research Network Consortium 1UC4DK104166-01, USA. TV and AJM were supported by Predoctoral Fellowship grants from the UPV/EHU and the Basque Department of Education, respectively. AOG is supported by a Predoctoral Fellowship Grant from the Basque Department of Education. ACR is supported by an Ikerbasque Research Fellow grant. LM was supported by a Fonds National de la Recherche Scientifique postdoctoral fellowship. DLE has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 115797 (INNODIA). This Joint Undertaking receives support from the Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Association (EFPIA), JDRF and Leona M. and Harry B. Helmsley Charitable Trust.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

125_2018_4782_MOESM1_ESM.pdf (434 kb)
ESM (PDF 434 kb)

References

  1. 1.
    Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 5(4):219–226.  https://doi.org/10.1038/nrendo.2009.21 CrossRefPubMedGoogle Scholar
  2. 2.
    Santin I, Eizirik DL (2013) Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and beta-cell apoptosis. Diabetes Obes Metab 15(s3):71–81.  https://doi.org/10.1111/dom.12162 CrossRefPubMedGoogle Scholar
  3. 3.
    Dotta F, Censini S, Van Halteren AGS et al (2007) Coxsackie B4 virus infection of β cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A 104(12):5115–5120.  https://doi.org/10.1073/pnas.0700442104 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yeung W-CG, Rawlinson WD, Craig ME (2011) Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342:d35–d35.  https://doi.org/10.1136/bmj.d35 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Marroqui L, Lopes M, dos Santos RS et al (2015) Differential cell autonomous responses determine the outcome of coxsackievirus infections in murine pancreatic α and β cells. Elife 4:1–23CrossRefGoogle Scholar
  6. 6.
    Devendra B, Jasinski J, Melanitou E et al (2005) Interferon-a as a mediator of polyinosinic:polycytidylic acid-induced type 1 diabetes. Diabetes 54(9):2549–2556.  https://doi.org/10.2337/diabetes.54.9.2549 CrossRefPubMedGoogle Scholar
  7. 7.
    Pociot F, Lernmark Å (2016) Genetic risk factors for type 1 diabetes. Lancet 387(10035):2331–2339.  https://doi.org/10.1016/S0140-6736(16)30582-7 CrossRefPubMedGoogle Scholar
  8. 8.
    Colli ML, Moore F, Gurzov EN, Ortis F, Eizirik DL (2009) MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic b-cell responses to the viral by-product double-stranded RNA. Hum Mol Genet 19:135–146CrossRefGoogle Scholar
  9. 9.
    de Beeck AO, Eizirik DL (2016) Viral infections in type 1 diabetes mellitus - why the β cells? Nat Rev Endocrinol 12(5):263–273.  https://doi.org/10.1038/nrendo.2016.30 CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Santin I, Moore F, Colli ML et al (2011) PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic b-cell apoptosis via regulation of the BH3-only protein bim. Diabetes 60(12):3279–3288.  https://doi.org/10.2337/db11-0758 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Santin I, Moore F, Grieco FA, Marchetti P, Brancolini C, Eizirik DL (2012) USP18 is a key regulator of the interferon-driven gene network modulating pancreatic beta cell inflammation and apoptosis. Cell Death Dis 3(11):e419.  https://doi.org/10.1038/cddis.2012.158 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Marroqui L, Dos Santos RS, Fløyel T et al (2015) TYK2, a candidate gene for type 1 diabetes, modulates apoptosis and the innate immune response in human pancreatic β-cells. Diabetes 64(11):3808–3817.  https://doi.org/10.2337/db15-0362 CrossRefPubMedGoogle Scholar
  13. 13.
    Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678CrossRefGoogle Scholar
  14. 14.
    Dubois PCA, Trynka G, Franke L et al (2010) Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 42(4):295–302.  https://doi.org/10.1038/ng.543 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zuvich RL, Bush WS, McCauley JL et al (2011) Interrogating the complex role of chromosome 16p13.13 in multiple sclerosis susceptibility: independent genetic signals in the CIITA-CLEC16A-SOCS1 gene complex. Hum Mol Genet 20(17):3517–3524.  https://doi.org/10.1093/hmg/ddr250 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hakonarson H, Grant SF, Bradfield JP et al (2007) A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448(7153):591–594.  https://doi.org/10.1038/nature06010 CrossRefPubMedGoogle Scholar
  17. 17.
    Soleimanpour SA, Gupta A, Bakay M et al (2014) The diabetes susceptibility gene Clec16a regulates mitophagy. Cell 157(7):1577–1590.  https://doi.org/10.1016/j.cell.2014.05.016 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Davison LJ, Wallace C, Cooper JD et al (2012) Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Hum Mol Genet 21(2):322–333.  https://doi.org/10.1093/hmg/ddr468 CrossRefPubMedGoogle Scholar
  19. 19.
    Leikfoss IS, Mero IL, Dahle MK et al (2013) Multiple sclerosis-associated single-nucleotide polymorphisms in CLEC16A correlate with reduced SOCS1 and DEXI expression in the thymus. Genes Immun 14(1):62–66.  https://doi.org/10.1038/gene.2012.52 CrossRefPubMedGoogle Scholar
  20. 20.
    Tomlinson MJ, Pitsillides A, Pickin R et al (2014) Fine mapping and functional studies of risk variants for type 1 diabetes at chromosome 16p13.13. Diabetes 63:4360–4368CrossRefGoogle Scholar
  21. 21.
    Edgar AJ, Birks EJ, Yacoub MH, Polak JM (2001) Cloning of dexamethasone-induced transcript: a novel glucocorticoid-induced gene that is upregulated in emphysema. Am J Respir Cell Mol Biol 25(1):119–124.  https://doi.org/10.1165/ajrcmb.25.1.4417 CrossRefPubMedGoogle Scholar
  22. 22.
    Santin I, Dos Santos RS, Eizirik DL (2016) Pancreatic beta cell survival and signaling pathways: effects of type 1 diabetes-associated genetic variants. Methods Mol Biol 1433:21–54.  https://doi.org/10.1007/7651_2015_291 CrossRefPubMedGoogle Scholar
  23. 23.
    Ravassard P, Hazhouz Y, Pechberty S et al (2011) A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 121(9):3589–3597.  https://doi.org/10.1172/JCI58447 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Marroqui L, Masini M, Merino B et al (2015) Pancreatic α cells are resistant to metabolic stress-induced apoptosis in type 2 diabetes. EBioMedicine 2(5):378–385.  https://doi.org/10.1016/j.ebiom.2015.03.012 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lupi R, Del Guerra S, Tellini C et al (1999) The biguanide compound metformin prevents desensitization of human pancreatic islets induced by high glucose. Eur J Pharmacol 364(2-3):205–209.  https://doi.org/10.1016/S0014-2999(98)00807-3 CrossRefPubMedGoogle Scholar
  26. 26.
    Eizirik DL, Sammeth M, Bouckenooghe T et al (2012) The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet 8(3):e1002552.  https://doi.org/10.1371/journal.pgen.1002552 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Moore F, Colli ML, Cnop M et al (2009) PTPN2, a candidate gene for type 1 diabetes, modulates interferon-gamma-induced pancreatic beta-cell apoptosis. Diabetes 58(6):1283–1291.  https://doi.org/10.2337/db08-1510 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dos Santos RS, Marroqui L, Grieco FA et al (2017) Protective role of complement C3 against cytokine-mediated β-cell apoptosis. Endocrinology 158(8):2503–2521.  https://doi.org/10.1210/en.2017-00104 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Coomans de Brachène A, Dos Santos RS, Marroqui L et al (2018) IFN-α induces a preferential long-lasting expression of MHC class I in human pancreatic beta cells. Diabetologia 61(3):636–640.  https://doi.org/10.1007/s00125-017-4536-4 CrossRefPubMedGoogle Scholar
  30. 30.
    Sato M, Suemori H, Hata N et al (2000) Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13(4):539–548.  https://doi.org/10.1016/S1074-7613(00)00053-4 CrossRefPubMedGoogle Scholar
  31. 31.
    Rasschaert J, Ladriere L, Urbain M et al (2005) Toll-like receptor 3 and STAT-1 contribute to double-stranded RNA+ interferon- -induced apoptosis in primary pancreatic b-cells. J Biol Chem 280(40):33984–33991.  https://doi.org/10.1074/jbc.M502213200 CrossRefPubMedGoogle Scholar
  32. 32.
    Li X, Hastie AT, Hawkins GA et al (2015) EQTL of bronchial epithelial cells and bronchial alveolar lavage deciphers GWAS-identified asthma genes. Allergy 70(10):1309–1318.  https://doi.org/10.1111/all.12683 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Colli ML, Nogueira TC, Allagnat F et al (2011) Exposure to the viral by-product dsRNA or coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance. PLoS Pathog 7(9):e1002267.  https://doi.org/10.1371/journal.ppat.1002267 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hirata Y, Broquet AH, Menchén L, Kagnoff MF (2007) Activation of innate immune defense mechanisms by signaling through RIG-I/IPS-1 in intestinal epithelial cells. J Immunol 179(8):5425–5432.  https://doi.org/10.4049/jimmunol.179.8.5425 CrossRefPubMedGoogle Scholar
  35. 35.
    Jindrich K, Degnan BM (2016) The diversification of the basic leucine zipper family in eukaryotes correlates with the evolution of multicellularity genome evolution and evolutionary systems biology. BMC Evol Biol 16(1):28.  https://doi.org/10.1186/s12862-016-0598-z CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Takeuchi K, Kadota S, Takeda M, Miyajima N, Nagata K (2003) Measles virus V protein blocks interferon (IFN)-alpha/beta but not IFN-gamma signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett 545(2-3):177–182.  https://doi.org/10.1016/S0014-5793(03)00528-3 CrossRefPubMedGoogle Scholar
  37. 37.
    Gao S, Li J, Song L, Wu J, Huang W (2017) Influenza a virus-induced downregulation of miR-26a contributes to reduced IFNα/β production. Virol Sin 32(4):261–270.  https://doi.org/10.1007/s12250-017-4004-9 CrossRefPubMedGoogle Scholar
  38. 38.
    Miyaki Y, Suzuki K, Koizumi K et al (2012) Identification of a potent epigenetic biomarker for resistance to camptothecin and poor outcome to irinotecan-based chemotherapy in colon cancer. Int J Oncol 40(1):217–226.  https://doi.org/10.3892/ijo.2011.1189 CrossRefPubMedGoogle Scholar
  39. 39.
    Moore F, Naamane N, Colli ML et al (2011) STAT1 is a master regulator of pancreatic b-cell apoptosis and islet inflammation. J Biol Chem 286(2):929–941.  https://doi.org/10.1074/jbc.M110.162131 CrossRefPubMedGoogle Scholar
  40. 40.
    Huang X, Yuang J, Goddard A et al (1995) Interferon expression in the pancreases of patients with type I diabetes. Diabetes 44:658–664CrossRefGoogle Scholar
  41. 41.
    Chehadeh W, Weill J, Vantyghem MC et al (2000) Increased level of interferon-alpha in blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackievirus B infection. J Infect Dis 181(6):1929–1939.  https://doi.org/10.1086/315516 CrossRefPubMedGoogle Scholar
  42. 42.
    Carrero JA, Calderon B, Towfic F, Artyomov MN, Unanue ER (2013) Defining the transcriptional and cellular landscape of type 1 diabetes in the NOD mouse. PLoS One 8(3):e59701.  https://doi.org/10.1371/journal.pone.0059701 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fabris P, Betterle C, Greggio NA et al (1998) Insulin-dependent diabetes mellitus during alpha-interferon therapy for chronic viral hepatitis. J Hepatol 28(3):514–517.  https://doi.org/10.1016/S0168-8278(98)80328-0 CrossRefPubMedGoogle Scholar
  44. 44.
    Uonaga T, Yoshida K, Harada T, Shimodahira M, Nakamura Y (2012) Case of type 1 diabetes mellitus following interferon β-1a treatment for multiple sclerosis. Intern Med 51(14):1875–1877.  https://doi.org/10.2169/internalmedicine.51.7609 CrossRefPubMedGoogle Scholar
  45. 45.
    Sossau D, Kofler L, Eigentler T (2017) Type 1 diabetes mellitus caused by treatment with low-dose interferon-α in a melanoma patient. Melanoma Res 27(5):516–518.  https://doi.org/10.1097/CMR.0000000000000381 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Reinaldo S. Dos Santos
    • 1
    • 2
    • 3
  • Laura Marroqui
    • 1
    • 2
    • 3
  • Teresa Velayos
    • 3
    • 4
    • 5
  • Ane Olazagoitia-Garmendia
    • 4
    • 6
  • Amaia Jauregi-Miguel
    • 4
    • 6
  • Ainara Castellanos-Rubio
    • 3
    • 4
    • 6
  • Decio L. Eizirik
    • 1
  • Luis Castaño
    • 3
    • 4
    • 5
    • 7
  • Izortze Santin
    • 3
    • 4
    • 7
    • 8
  1. 1.ULB Center for Diabetes Research, Medical FacultyUniversité Libre de Bruxelles (ULB)BrusselsBelgium
  2. 2.Instituto de Biología Molecular y Celular (IBMC), and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE)Universitas Miguel HernándezElcheSpain
  3. 3.CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
  4. 4.Biocruces Bizkaia Health Research InstituteBarakaldoSpain
  5. 5.Department of PediatricsUniversity of the Basque CountryLeioaSpain
  6. 6.Department of Genetics, Physical Anthropology and Animal FisiologyUniversity of the Basque CountryLeioaSpain
  7. 7.CIBER de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
  8. 8.Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioaSpain

Personalised recommendations