Advertisement

Diabetologia

pp 1–12 | Cite as

Maternal metabolites during pregnancy are associated with newborn outcomes and hyperinsulinaemia across ancestries

  • Rachel Kadakia
  • Michael Nodzenski
  • Octavious Talbot
  • Alan Kuang
  • James R. Bain
  • Michael J. Muehlbauer
  • Robert D. Stevens
  • Olga R. Ilkayeva
  • Sara K. O’Neal
  • Lynn P. Lowe
  • Boyd E. Metzger
  • Christopher B. Newgard
  • Denise M. Scholtens
  • William L. LoweJr
  • for the HAPO Study Cooperative Research Group
Article

Abstract

Aims/hypothesis

We aimed to determine the association of maternal metabolites with newborn adiposity and hyperinsulinaemia in a multi-ethnic cohort of mother–newborn dyads.

Methods

Targeted and non-targeted metabolomics assays were performed on fasting and 1 h serum samples from a total of 1600 mothers in four ancestry groups (Northern European, Afro-Caribbean, Mexican American and Thai) who participated in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study, underwent an OGTT at ~28 weeks gestation and whose newborns had anthropometric measurements at birth.

Results

In this observational study, meta-analyses demonstrated significant associations of maternal fasting and 1 h metabolites with birthweight, cord C-peptide and/or sum of skinfolds across ancestry groups. In particular, maternal fasting triacylglycerols were associated with newborn sum of skinfolds. At 1 h, several amino acids, fatty acids and lipid metabolites were associated with one or more newborn outcomes. Network analyses revealed clusters of fasting acylcarnitines, amino acids, lipids and fatty acid metabolites associated with cord C-peptide and sum of skinfolds, with the addition of branched-chain and aromatic amino acids at 1 h.

Conclusions/interpretation

The maternal metabolome during pregnancy is associated with newborn outcomes. Maternal levels of amino acids, acylcarnitines, lipids and fatty acids and their metabolites during pregnancy relate to fetal growth, adiposity and cord C-peptide, independent of maternal BMI and blood glucose levels.

Keywords

Adiposity Fetal growth Metabolomics Pregnancy outcomes 

Abbreviations

AAA

Aromatic amino acid

BCAA

Branched-chain amino acid

CMPF

3-Carboxy-4-methyl-5-propyl-2-furanpropanoic acid

FDR

False discovery rate

GDM

Gestational diabetes mellitus

HAPO

Hyperglycemia and Adverse Pregnancy Outcome

QC

Quality control

RTL

Retention-time-locking

SSF

Sum of skinfolds

Notes

Contribution statement

RK contributed to data interpretation and manuscript writing. MN, OT and AK contributed to analysis and interpretation of data. MN and DMS led data analysis. JRB, MJM, RDS, ORI, SON, LPL, BEM and CBN contributed to acquisition and interpretation of data. DMS and WLL were involved in all aspects of the study, including study design and data collection, analysis and interpretation. All authors made critical intellectual contributions to drafting and/or revising the manuscript and all approved the final version. DMS and WLL are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Funding

This study was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK095963) and the National Institute of Child Health and Human Development (R01-HD34242, R01-HD34243).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

125_2018_4781_MOESM1_ESM.pdf (182 kb)
Tables (PDF 181 kb)

References

  1. 1.
    Barker DJ, Osmond C, Simmonds SJ, Wield GA (1993) The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ 306(6875):422–426.  https://doi.org/10.1136/bmj.306.6875.422 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gluckman PD, Hanson MA, Mitchell MD (2010) Developmental origins of health and disease: reducing the burden of chronic disease in the next generation. Genome medicine 2(2):14.  https://doi.org/10.1186/gm135 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Catalano PM, Hauguel-De Mouzon S (2011) Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am J Obstet Gynecol 204(6):479–487.  https://doi.org/10.1016/j.ajog.2010.11.039 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dabelea D, Crume T (2011) Maternal environment and the transgenerational cycle of obesity and diabetes. Diabetes 60(7):1849–1855.  https://doi.org/10.2337/db11-0400 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mihalik SJ, Goodpaster BH, Kelley DE et al (2010) Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring) 18(9):1695–1700.  https://doi.org/10.1038/oby.2009.510 CrossRefGoogle Scholar
  6. 6.
    Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9(4):311–326.  https://doi.org/10.1016/j.cmet.2009.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang TJ, Larson MG, Vasan RS et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–453.  https://doi.org/10.1038/nm.2307 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ramos-Roman MA, Sweetman L, Valdez MJ, Parks EJ (2012) Postprandial changes in plasma acylcarnitine concentrations as markers of fatty acid flux in overweight and obesity. Metabolism 61(2):202–212.  https://doi.org/10.1016/j.metabol.2011.06.008 CrossRefPubMedGoogle Scholar
  9. 9.
    Maitre L, Villanueva CM, Lewis MR et al (2016) Maternal urinary metabolic signatures of fetal growth and associated clinical and environmental factors in the INMA study. BMC Med 14(1):177.  https://doi.org/10.1186/s12916-016-0706-3 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ciborowski M, Zbucka-Kretowska M, Bomba-Opon D et al (2014) Potential first trimester metabolomic biomarkers of abnormal birth weight in healthy pregnancies. Prenat Diagn 34(9):870–877.  https://doi.org/10.1002/pd.4386 CrossRefPubMedGoogle Scholar
  11. 11.
    HAPO Study Cooperative Research Group (2008) Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 358:1991–2002CrossRefGoogle Scholar
  12. 12.
    Scholtens DM, Bain JR, Reisetter AC et al (2016) Metabolic networks and metabolites underlie associations between maternal glucose during pregnancy and newborn size at birth. Diabetes 65(7):2039–2050.  https://doi.org/10.2337/db15-1748 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Scholtens DM, Muehlbauer MJ, Daya NR et al (2014) Metabolomics reveals broad-scale metabolic perturbations in hyperglycemic mothers during pregnancy. Diabetes Care 37(1):158–166.  https://doi.org/10.2337/dc13-0989 CrossRefPubMedGoogle Scholar
  14. 14.
    Kind T, Wohlgemuth G, Lee DY et al (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81(24):10038–10048.  https://doi.org/10.1021/ac9019522 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Halket JM, Przyborowska A, Stein SE, Mallard WG, Down S, Chalmers RA (1999) Deconvolution gas chromatography/mass spectrometry of urinary organic acids--potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun Mass Spectrom 13(4):279–284.  https://doi.org/10.1002/(SICI)1097-0231(19990228)13:4<279::AID-RCM478>3.0.CO;2-I CrossRefPubMedGoogle Scholar
  16. 16.
    Nodzenski M, Muehlbauer MJ, Bain JR, Reisetter AC, Lowe WL Jr, Scholtens DM (2014) Metabomxtr: an R package for mixture-model analysis of non-targeted metabolomics data. Bioinformatics 30(22):3287–3288.  https://doi.org/10.1093/bioinformatics/btu509 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jacob S, Nodzenski M, Reisetter AC et al (2017) Targeted metabolomics demonstrates distinct and overlapping maternal metabolites associated with BMI, glucose, and insulin sensitivity during pregnancy across four ancestry groups. Diabetes Care 40(7):911–919.  https://doi.org/10.2337/dc16-2453 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics (Oxford, England) 9(3):432–441.  https://doi.org/10.1093/biostatistics/kxm045 CrossRefGoogle Scholar
  19. 19.
    Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E Stat Nonlinear Soft Matter Phys 74(1):016110.  https://doi.org/10.1103/PhysRevE.74.016110 CrossRefGoogle Scholar
  20. 20.
    HAPO Study Cooperative Research Group (2010) Hyperglycaemia and Adverse Pregnancy Outcome (HAPO) Study: associations with maternal body mass index. BJOG 117(5):575–584.  https://doi.org/10.1111/j.1471-0528.2009.02486.x
  21. 21.
    Catalano PM, McIntyre HD, Cruickshank JK et al (2012) The hyperglycemia and adverse pregnancy outcome study: associations of GDM and obesity with pregnancy outcomes. Diabetes Care 35(4):780–786.  https://doi.org/10.2337/dc11-1790 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Freinkel N (1980) Banting lecture 1980. Of pregnancy and progeny. Diabetes 29(12):1023–1035.  https://doi.org/10.2337/diab.29.12.1023 CrossRefPubMedGoogle Scholar
  23. 23.
    Sandler V, Reisetter AC, Bain JR et al (2017) Associations of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes. Diabetologia 60(3):518–530.  https://doi.org/10.1007/s00125-016-4182-2 CrossRefPubMedGoogle Scholar
  24. 24.
    Di Cianni G, Miccoli R, Volpe L et al (2005) Maternal triglyceride levels and newborn weight in pregnant women with normal glucose tolerance. Diabet Med 22(1):21–25.  https://doi.org/10.1111/j.1464-5491.2004.01336.x CrossRefPubMedGoogle Scholar
  25. 25.
    Tyrrell J, Richmond RC, Palmer TM et al (2016) Genetic evidence for causal relationships between maternal obesity-related traits and birth weight. JAMA 315(11):1129–1140.  https://doi.org/10.1001/jama.2016.1975 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Felig P, Marliss E, Cahill GF Jr (1969) Plasma amino acid levels and insulin secretion in obesity. N Engl J Med 281(15):811–816.  https://doi.org/10.1056/NEJM196910092811503 CrossRefPubMedGoogle Scholar
  27. 27.
    McCormack SE, Shaham O, McCarthy MA et al (2013) Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes 8(1):52–61.  https://doi.org/10.1111/j.2047-6310.2012.00087.x CrossRefPubMedGoogle Scholar
  28. 28.
    Wurtz P, Soininen P, Kangas AJ et al (2013) Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36(3):648–655.  https://doi.org/10.2337/dc12-0895 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chen T, Ni Y, Ma X et al (2016) Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations. Sci Rep 6(1):20594.  https://doi.org/10.1038/srep20594 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lotta LA, Scott RA, Sharp SJ et al (2016) Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a Mendelian randomisation analysis. Plos Med 13(11):e1002179.  https://doi.org/10.1371/journal.pmed.1002179 CrossRefGoogle Scholar
  31. 31.
    Mahendran Y, Jonsson A, Have CT et al (2017) Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels. Diabetologia 60(5):873–878.  https://doi.org/10.1007/s00125-017-4222-6 CrossRefPubMedGoogle Scholar
  32. 32.
    Wang Q, Holmes MV, Davey Smith G, Ala-Korpela M (2017) Genetic support for a causal role of insulin resistance on circulating branched-chain amino acids and inflammation. 40(12):1779–1786.  https://doi.org/10.2337/dc17-1642 CrossRefGoogle Scholar
  33. 33.
    Wurtz P, Tiainen M, Makinen VP et al (2012) Circulating metabolite predictors of glycemia in middle-aged men and women. Diabetes Care 35(8):1749–1756.  https://doi.org/10.2337/dc11-1838 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Guasch-Ferre M, Hruby A, Toledo E, Clish CB, Martinez-Gonzalez MA, Salas-Salvado J (2016) Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39(5):833–846.  https://doi.org/10.2337/dc15-2251 CrossRefGoogle Scholar
  35. 35.
    Herrera E, Amusquivar E, Lopez-Soldado I, Ortega H (2006) Maternal lipid metabolism and placental lipid transfer. Horm Res 65 Suppl 3:59–64.  https://doi.org/10.1159/000091507 CrossRefPubMedGoogle Scholar
  36. 36.
    Frigolet ME, Gutierrez-Aguilar R (2017) The role of the novel lipokine palmitoleic acid in health and disease. Adv Nutr (Bethesda, Md) 8(1):173s–181s.  https://doi.org/10.3945/an.115.011130 CrossRefGoogle Scholar
  37. 37.
    Okada T, Furuhashi N, Kuromori Y, Miyashita M, Iwata F, Harada K (2005) Plasma palmitoleic acid content and obesity in children. Am J Clin Nutr 82(4):747–750.  https://doi.org/10.1093/ajcn/82.4.747 CrossRefPubMedGoogle Scholar
  38. 38.
    Paillard F, Catheline D, Duff FL et al (2008) Plasma palmitoleic acid, a product of stearoyl-coA desaturase activity, is an independent marker of triglyceridemia and abdominal adiposity. Nutr Metab Cardiovasc Dis 18(6):436–440.  https://doi.org/10.1016/j.numecd.2007.02.017 CrossRefPubMedGoogle Scholar
  39. 39.
    Liu Y, Prentice KJ, Eversley JA et al (2016) Rapid elevation in CMPF may act as a tipping point in diabetes development. Cell Rep 14(12):2889–2900.  https://doi.org/10.1016/j.celrep.2016.02.079 CrossRefPubMedGoogle Scholar
  40. 40.
    Prentice KJ, Luu L, Allister EM et al (2014) The furan fatty acid metabolite CMPF is elevated in diabetes and induces beta cell dysfunction. Cell Metab 19(4):653–666.  https://doi.org/10.1016/j.cmet.2014.03.008 CrossRefPubMedGoogle Scholar
  41. 41.
    Retnakaran R, Ye C, Kramer CK et al (2016) Evaluation of circulating determinants of beta-cell function in women with and without gestational diabetes. J Clin Endocrinol Metab 101(7):2683–2691.  https://doi.org/10.1210/jc.2016-1402 CrossRefPubMedGoogle Scholar
  42. 42.
    Schooneman MG, Vaz FM, Houten SM, Soeters MR (2013) Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes 62(1):1–8.  https://doi.org/10.2337/db12-0466 CrossRefPubMedGoogle Scholar
  43. 43.
    Muoio DM, Noland RC, Kovalik JP et al (2012) Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metab 15(5):764–777.  https://doi.org/10.1016/j.cmet.2012.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Muoio DM (2014) Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell 159(6):1253–1262.  https://doi.org/10.1016/j.cell.2014.11.034 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chen LW, Tint MT, Fortier MV et al (2017) Which anthropometric measures best reflect neonatal adiposity? Int J Obes 42(3):501–506.  https://doi.org/10.1038/ijo.2017.250 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rachel Kadakia
    • 1
    • 2
  • Michael Nodzenski
    • 1
  • Octavious Talbot
    • 1
  • Alan Kuang
    • 1
  • James R. Bain
    • 3
    • 4
    • 5
  • Michael J. Muehlbauer
    • 3
    • 4
    • 5
  • Robert D. Stevens
    • 3
    • 4
    • 5
  • Olga R. Ilkayeva
    • 3
    • 4
    • 5
  • Sara K. O’Neal
    • 3
    • 4
    • 5
  • Lynn P. Lowe
    • 1
  • Boyd E. Metzger
    • 1
  • Christopher B. Newgard
    • 3
    • 4
    • 5
  • Denise M. Scholtens
    • 1
  • William L. LoweJr
    • 1
  • for the HAPO Study Cooperative Research Group
  1. 1.Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  2. 2.Ann and Robert H. Lurie Children’s Hospital of ChicagoChicagoUSA
  3. 3.Sarah W. Stedman Nutrition and Metabolism CenterDuke University Medical CenterDurhamUSA
  4. 4.Duke Molecular Physiology InstituteDurhamUSA
  5. 5.Duke University School of MedicineDurhamUSA

Personalised recommendations