Advertisement

Diabetologia

pp 1–13 | Cite as

Anti-fumarase antibody promotes the dropout of photoreceptor inner and outer segments in diabetic macular oedema

  • Shin Yoshitake
  • Tomoaki Murakami
  • Kiyoshi Suzuma
  • Tatsuya Yoshitake
  • Akihito Uji
  • Satoshi Morooka
  • Yoko Dodo
  • Masahiro Fujimoto
  • Yang Shan
  • Patrice E. Fort
  • Shinji Ito
  • Akitaka Tsujikawa
  • Nagahisa Yoshimura
Article

Abstract

Aims/hypothesis

In diabetic macular oedema (DMO), blood components passing through the disrupted blood–retinal barrier cause neuroinflammation, but the mechanism by which autoantibodies induce neuroglial dysfunction is unknown. The aim of this study was to identify a novel autoantibody and to evaluate its pathological effects on clinically relevant photoreceptor injuries.

Methods

Biochemical purification and subsequent peptide fingerprinting were applied to identify autoantigens. The titres of autoantibodies in DMO sera were quantified and their associations with clinical variables were evaluated. Two animal models (i.e. passive transfer of autoantibodies and active immunisation) were characterised with respect to autoimmune mechanisms underlying photoreceptor injuries.

Results

After screening serum IgG from individuals with DMO, fumarase, a Krebs cycle enzyme expressed in inner segments, was identified as an autoantigen. Serum levels of anti-fumarase IgG in participants with DMO were higher than those in diabetic participants without DMO (p < 0.001) and were related to photoreceptor damage and visual dysfunction. Passively transferred fumarase IgG from DMO sera in concert with complement impaired the function and structure of rodent photoreceptors. This was consistent with complement activation in the damaged photoreceptors of mice immunised with fumarase. Fumarase was recruited to the cell surface by complement and reacted to this autoantibody. Subsequently, combined administration of anti-fumarase antibody and complement elicited mitochondrial disruption and caspase-3 activation.

Conclusions/interpretation

This study has identified anti-fumarase antibody as a serum biomarker and demonstrates that the generation of this autoantibody might be a pathological mechanism of autoimmune photoreceptor injuries in DMO.

Keywords

Anti-fumarase antibody Autoantibody Complement Diabetic macular oedema Optical coherence tomography Photoreceptor damage Serum biomarker 

Abbreviations

BRB

Blood–retinal barrier

CAR

Cancer-associated retinopathy

COX

Cytochrome C oxidase

DMO

Diabetic macular oedema

HEK

Human embryonic kidney

logMAR

Logarithm of the minimum angle of resolution

MAC

Membrane attack complex

OCT

Optical coherence tomography

VEGF

Vascular endothelial growth factor

Notes

Acknowledgements

We would like to thank R. H. Rosa Jr (Texas A&M Health Science Center, Bryan, TX, USA) for providing discussion, and K. Okamoto-Furuta and H. Kohda (Division of Electron Microscopic Study, Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto, Japan) for technical assistance in electron microscopy.

Contribution statement

SY conceived and designed the study, acquired data, drafted the manuscript and approved its final version. TM, KS, TY, AU, SM, YD, MF, AT and NY contributed to the conception and design of the study and acquisition, analysis and interpretation of data, revised the article’s intellectual content and approved the final version. YS, PEF and SI contributed to the acquisition and analysis of data, revised the article’s intellectual content and approved the final version. TM is the guarantor of this work.

Funding

The study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (26462637, 17K11423, 18K19610). Immunostaining of human retinas, which used the Core Center for Vision Research funded by P30 EY007003 from the National Eye Institute, was supported by awards from Eversight and the Diabetes Consortium (National Institutes of Health). MS studies were performed at the Medical Research Support Center, Graduate School of Medicine, Kyoto University, which was supported by the Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

125_2018_4773_MOESM1_ESM.pdf (1.1 mb)
ESM (PDF 1137 kb)

References

  1. 1.
    Frank RN (2004) Diabetic retinopathy. N Engl J Med 350(1):48–58.  https://doi.org/10.1056/NEJMra021678 CrossRefPubMedGoogle Scholar
  2. 2.
    Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564.  https://doi.org/10.2337/dc11-1909 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW (2002) Diabetic retinopathy: more than meets the eye. Surv Ophthalmol 47(Suppl 2):S253–S262.  https://doi.org/10.1016/S0039-6257(02)00387-9 CrossRefPubMedGoogle Scholar
  4. 4.
    Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366(13):1227–1239.  https://doi.org/10.1056/NEJMra1005073 CrossRefPubMedGoogle Scholar
  5. 5.
    Murakami T, Frey T, Lin C, Antonetti DA (2012) Protein kinase cβ phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo. Diabetes 61(6):1573–1583.  https://doi.org/10.2337/db11-1367 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254(5035):1178–1181.  https://doi.org/10.1126/science.1957169 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Browning DJ, Glassman AR, Aiello LP et al (2007) Relationship between optical coherence tomography-measured central retinal thickness and visual acuity in diabetic macular edema. Ophthalmology 114(3):525–536.  https://doi.org/10.1016/j.ophtha.2006.06.052 CrossRefPubMedGoogle Scholar
  8. 8.
    Spaide RF, Curcio CA (2011) Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 31(8):1609–1619.  https://doi.org/10.1097/IAE.0b013e3182247535 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sakamoto A, Nishijima K, Kita M et al (2009) Association between foveal photoreceptor status and visual acuity after resolution of diabetic macular edema by pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol 247(10):1325–1330.  https://doi.org/10.1007/s00417-009-1107-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Murakami T, Nishijima K, Akagi T et al (2012) Optical coherence tomographic reflectivity of photoreceptors beneath cystoid spaces in diabetic macular edema. Invest Ophthalmol Vis Sci 53(3):1506–1511.  https://doi.org/10.1167/iovs.11-9231 CrossRefPubMedGoogle Scholar
  11. 11.
    Aiello LP, Avery RL, Arrigg PG et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331(22):1480–1487.  https://doi.org/10.1056/NEJM199412013312203 CrossRefPubMedGoogle Scholar
  12. 12.
    Cunningham ET Jr, Adamis AP, Altaweel M et al (2005) A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 112(10):1747–1757.  https://doi.org/10.1016/j.ophtha.2005.06.007 CrossRefPubMedGoogle Scholar
  13. 13.
    Bunt-Milam AH, Saari JC, Klock IB, Garwin GG (1985) Zonulae adherentes pore size in the external limiting membrane of the rabbit retina. Invest Ophthalmol Vis Sci 26(10):1377–1380PubMedGoogle Scholar
  14. 14.
    Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–415.  https://doi.org/10.1038/nrn1106 CrossRefPubMedGoogle Scholar
  15. 15.
    Thirkill CE, Roth AM, Keltner JL (1987) Cancer-associated retinopathy. Arch Ophthalmol 105(3):372–375.  https://doi.org/10.1001/archopht.1987.01060030092033 CrossRefPubMedGoogle Scholar
  16. 16.
    Ishida S, Yamashiro K, Usui T et al (2003) Leukocytes mediate retinal vascular remodeling during development and vaso-obliteration in disease. Nat Med 9(6):781–788.  https://doi.org/10.1038/nm877 CrossRefPubMedGoogle Scholar
  17. 17.
    Ambati J, Anand A, Fernandez S et al (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9(11):1390–1397.  https://doi.org/10.1038/nm950 CrossRefPubMedGoogle Scholar
  18. 18.
    Srivastava R, Aslam M, Kalluri SR et al (2012) Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med 367(2):115–123.  https://doi.org/10.1056/NEJMoa1110740 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tolley E, Craig I (1975) Presence of two forms of fumarase (fumarate hydratase E.C. 4.2.1.2) in mammalian cells: immunological characterization and genetic analysis in somatic cell hybrids. Confirmation of the assignment of a gene necessary for the enzyme expression to human chromosome 1. Biochem Genet 13:867–883CrossRefGoogle Scholar
  20. 20.
    Early Treatment Diabetic Retinopathy Study Research Group (1985) Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Arch Ophthalmol 103:1796–1806CrossRefGoogle Scholar
  21. 21.
    Wilkinson CP, Ferris FL 3rd, Klein RE et al (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682.  https://doi.org/10.1016/S0161-6420(03)00475-5 CrossRefPubMedGoogle Scholar
  22. 22.
    Triantafilou K, Hughes TR, Triantafilou M, Morgan BP (2013) The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci 126(13):2903–2913.  https://doi.org/10.1242/jcs.124388 CrossRefPubMedGoogle Scholar
  23. 23.
    Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578.  https://doi.org/10.1038/nrm3412 CrossRefPubMedGoogle Scholar
  24. 24.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516.  https://doi.org/10.1080/01926230701320337 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW (2006) Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci 9(10):1234–1236.  https://doi.org/10.1038/nn1774 CrossRefPubMedGoogle Scholar
  26. 26.
    Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766.  https://doi.org/10.1016/j.neuron.2008.10.010 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Funatsu H, Yamashita H, Noma H et al (2002) Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmol 133(1):70–77.  https://doi.org/10.1016/S0002-9394(01)01269-7 CrossRefPubMedGoogle Scholar
  28. 28.
    Adamus G, Aptsiauri N, Guy J et al (1996) The occurrence of serum autoantibodies against enolase in cancer-associated retinopathy. Clin Immunol Immunopathol 78(2):120–129.  https://doi.org/10.1006/clin.1996.0021 CrossRefPubMedGoogle Scholar
  29. 29.
    Adamus G, Chew EY, Ferris FL, Klein ML (2014) Prevalence of anti-retinal autoantibodies in different stages of age-related macular degeneration. BMC Ophthalmol 14(1):154.  https://doi.org/10.1186/1471-2415-14-154 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shechter R, London A, Schwartz M (2013) Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 13(3):206–218.  https://doi.org/10.1038/nri3391 CrossRefPubMedGoogle Scholar
  31. 31.
    Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787–790.  https://doi.org/10.1038/35008121 CrossRefPubMedGoogle Scholar
  32. 32.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787.  https://doi.org/10.1016/j.cell.2008.05.009 CrossRefGoogle Scholar
  33. 33.
    Du Y, Veenstra A, Palczewski K, Kern TS (2013) Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci U S A 110(41):16586–16591.  https://doi.org/10.1073/pnas.1314575110 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Doyle HA, Mamula MJ (2001) Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol 22(8):443–449.  https://doi.org/10.1016/S1471-4906(01)01976-7 CrossRefPubMedGoogle Scholar
  35. 35.
    Saadoun S, Waters P, Bell BA et al (2010) Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 133(2):349–361.  https://doi.org/10.1093/brain/awp309 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Patrick J, Lindstrom J (1973) Autoimmune response to acetylcholine receptor. Science 180(4088):871–872.  https://doi.org/10.1126/science.180.4088.871 CrossRefPubMedGoogle Scholar
  37. 37.
    Toro JR, Nickerson ML, Wei MH et al (2003) Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73(1):95–106.  https://doi.org/10.1086/376435 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pollard PJ, Spencer-Dene B, Shukla D et al (2007) Targeted inactivation of fh1 causes proliferative renal cyst development and activation of the hypoxia pathway. Cancer Cell 11(4):311–319.  https://doi.org/10.1016/j.ccr.2007.02.005 CrossRefPubMedGoogle Scholar
  39. 39.
    Hanayama R, Tanaka M, Miyasaka K et al (2004) Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304(5674):1147–1150.  https://doi.org/10.1126/science.1094359 CrossRefPubMedGoogle Scholar
  40. 40.
    Kaplan MM, Gershwin ME (2005) Primary biliary cirrhosis. N Engl J Med 353(12):1261–1273.  https://doi.org/10.1056/NEJMra043898 CrossRefPubMedGoogle Scholar
  41. 41.
    Adamus G, Machnicki M, Seigel GM (1997) Apoptotic retinal cell death induced by antirecoverin autoantibodies of cancer-associated retinopathy. Invest Ophthalmol Vis Sci 38(2):283–291PubMedGoogle Scholar
  42. 42.
    Magrys A, Anekonda T, Ren G, Adamus G (2007) The role of anti-α-enolase autoantibodies in pathogenicity of autoimmune-mediated retinopathy. J Clin Immunol 27(2):181–192.  https://doi.org/10.1007/s10875-006-9065-8 CrossRefPubMedGoogle Scholar
  43. 43.
    Grundtman C, Kreutmayer SB, Almanzar G, Wick MC, Wick G (2011) Heat shock protein 60 and immune inflammatory responses in atherosclerosis. Arterioscler Thromb Vasc Biol 31(5):960–968.  https://doi.org/10.1161/ATVBAHA.110.217877 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Georgiannakis A, Burgoyne T, Lueck K et al (2015) Retinal pigment epithelial cells mitigate the effects of complement attack by endocytosis of C5b-9. J Immunol 195(7):3382–3389.  https://doi.org/10.4049/jimmunol.1500937 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Swerdlow RH, Parks JK, Cassarino DS et al (1998) Mitochondria in sporadic amyotrophic lateral sclerosis. Exp Neurol 153(1):135–142.  https://doi.org/10.1006/exnr.1998.6866 CrossRefPubMedGoogle Scholar
  46. 46.
    Galluzzi L, Blomgren K, Kroemer G (2009) Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 10(7):481–494.  https://doi.org/10.1038/nrn2665 CrossRefPubMedGoogle Scholar
  47. 47.
    Mori Y, Suzuma K, Uji A et al (2016) Restoration of foveal photoreceptors after intravitreal ranibizumab injections for diabetic macular edema. Sci Rep 6(1):39161.  https://doi.org/10.1038/srep39161 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Keir LS, Firth R, Aponik L et al (2017) VEGF regulates local inhibitory complement proteins in the eye and kidney. J Clin Invest 127(1):199–214.  https://doi.org/10.1172/JCI86418 CrossRefPubMedGoogle Scholar
  49. 49.
    Sawyer RA, Selhorst JB, Zimmerman LE, Hoyt WF (1976) Blindness caused by photoreceptor degeneration as a remote effect of cancer. Am J Ophthalmol 81(5):606–613.  https://doi.org/10.1016/0002-9394(76)90125-2 CrossRefPubMedGoogle Scholar
  50. 50.
    Ambati J, Atkinson JP, Gelfand BD (2013) Immunology of age-related macular degeneration. Nat Rev Immunol 13(6):438–451.  https://doi.org/10.1038/nri3459 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shin Yoshitake
    • 1
  • Tomoaki Murakami
    • 1
  • Kiyoshi Suzuma
    • 1
  • Tatsuya Yoshitake
    • 1
  • Akihito Uji
    • 1
  • Satoshi Morooka
    • 1
  • Yoko Dodo
    • 1
  • Masahiro Fujimoto
    • 1
  • Yang Shan
    • 2
  • Patrice E. Fort
    • 2
    • 3
  • Shinji Ito
    • 4
  • Akitaka Tsujikawa
    • 1
  • Nagahisa Yoshimura
    • 1
  1. 1.Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyotoJapan
  2. 2.Department of Ophthalmology and Visual SciencesUniversity of Michigan, Kellogg Eye CenterAnn ArborUSA
  3. 3.Department of Molecular and Integrative PhysiologyUniversity of Michigan, Kellogg Eye CenterAnn ArborUSA
  4. 4.Medical Research Support Center, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations