, Volume 61, Issue 8, pp 1804–1810 | Cite as

Vegf-A mRNA transfection as a novel approach to improve mouse and human islet graft revascularisation

  • Willem Staels
  • Yannick Verdonck
  • Yves Heremans
  • Gunter Leuckx
  • Sofie De Groef
  • Carlo Heirman
  • Eelco de Koning
  • Conny Gysemans
  • Kris Thielemans
  • Luc Baeyens
  • Harry HeimbergEmail author
  • Nico De LeuEmail author
Short Communication



The initial avascular period following islet transplantation seriously compromises graft function and survival. Enhancing graft revascularisation to improve engraftment has been attempted through virus-based delivery of angiogenic triggers, but risks associated with viral vectors have hampered clinical translation. In vitro transcribed mRNA transfection circumvents these risks and may be used for improving islet engraftment.


Mouse and human pancreatic islet cells were transfected with mRNA encoding the angiogenic growth factor vascular endothelial growth factor A (VEGF-A) before transplantation under the kidney capsule in mice.


At day 7 post transplantation, revascularisation of grafts transfected with Vegf-A (also known as Vegfa) mRNA was significantly higher compared with non-transfected or Gfp mRNA-transfected controls in mouse islet grafts (2.11- and 1.87-fold, respectively) (vessel area/graft area, mean ± SEM: 0.118 ± 0.01 [n = 3] in Vegf-A mRNA transfected group (VEGF) vs 0.056 ± 0.01 [n = 3] in no RNA [p < 0.05] vs 0.063 ± 0.02 [n = 4] in Gfp mRNA transfected group (GFP) [p < 0.05]); EndoC-bH3 grafts (2.85- and 2.48-fold. respectively) (0.085 ± 0.02 [n = 4] in VEGF vs 0.030 ± 0.004 [n = 4] in no RNA [p < 0.05] vs 0.034 ± 0.01 [n = 5] in GFP [p < 0.05]); and human islet grafts (3.17- and 3.80-fold, respectively) (0.048 ± 0.013 [n = 3] in VEGF vs 0.015 ± 0.0051 [n = 4] in no RNA [p < 0.01] vs 0.013 ± 0.0046 [n = 4] in GFP [p < 0.01]). At day 30 post transplantation, human islet grafts maintained a vascularisation benefit (1.70- and 1.82-fold, respectively) (0.049 ± 0.0042 [n = 8] in VEGF vs 0.029 ± 0.0052 [n = 5] in no RNA [p < 0.05] vs 0.027 ± 0.0056 [n = 4] in GFP [p < 0.05]) and a higher beta cell volume (1.64- and 2.26-fold, respectively) (0.0292 ± 0.0032 μl [n = 7] in VEGF vs 0.0178 ± 0.0021 μl [n = 5] in no RNA [p < 0.01] vs 0.0129 ± 0.0012 μl [n = 4] in GFP [p < 0.001]).


Vegf-A mRNA transfection before transplantation provides a promising and safe strategy to improve engraftment of islets and other cell-based implants.


Cell therapy Diabetes Gene delivery Graft revascularisation Islet transplantation Messenger RNA Pancreatic beta cell RNA delivery VEGFA 



Gfp mRNA transfected group


In vitro transcription


modified Vegf-A mRNA transfected group


Severe combined immunodeficiency


Vegf-A mRNA transfected group


Vascular endothelial growth factor A



The authors thank V. Laurysens, A. Demarré and E. Quartier (BENE, Vrije Universiteit Brussel, Brussels, Belgium) for technical help. We also thank J. van den Ameele (Andrea Brand Lab, Gurdon Institute, University of Cambridge, Cambridge, UK) for revising the manuscript.

Contribution statement

WS, EdK, CG, CH, KT, LB, HH and NDL designed and conceived the experiments. WS, YV, YH, GL and SDG acquired and analysed the data. EdK provided human islets. CH and KT provided Gfp mRNA, Vegf-A mRNA and modified Vegf-A mRNA. WS, YV, YH, CH, KT, CG, LB, HH and NDL interpreted the data. WS and NDL drafted the article. All authors revised the article and approved of the final version. NDL is the guarantor of this work.


The authors acknowledge support by grants from the Research Foundation Flanders (FWO), the VUB Research Council, Stichting Diabetes Onderzoek Nederland, the European Union Sixth and Seventh Framework Program, the Wetenschappelijk Fonds Willy Gepts (WFWG) of the UZ Brussel and the Belgian Federal Science Policy (IAPVII-07). WS is a PhD fellow of Research Foundation Flanders.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

125_2018_4646_MOESM1_ESM.pdf (4.1 mb)
ESM (PDF 4.06 mb)


  1. 1.
    Ling Z, De Pauw P, Jacobs-Tulleneers-Thevissen D et al (2015) Plasma GAD65, a marker for early beta-cell loss after intraportal islet cell transplantation in diabetic patients. J Clin Endocrinol Metab 100:2314–2321CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Eriksson O, Eich T, Sundin A et al (2009) Positron emission tomography in clinical islet transplantation. Am J Transplant 9:2816–2824CrossRefPubMedGoogle Scholar
  3. 3.
    Biarnés M, Montolio M, Nacher V, Raurell M, Soler J, Montanya E (2002) β-cell death and mass in syngeneically transplanted islets exposed to short- and long-term hyperglycemia. Diabetes 51:66–72CrossRefPubMedGoogle Scholar
  4. 4.
    McCall M, James Shapiro AM (2012) Update on islet transplantation. Cold Spring Harb Perspect Med 2:a007823CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Keymeulen B, Gillard P, Mathieu C et al (2006) Correlation between beta cell mass and glycemic control in type 1 diabetic recipients of islet cell graft. Proc Natl Acad Sci U S A 103:17444–17449CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Staels W, De Groef S, Heremans Y et al (2016) Accessory cells for beta-cell transplantation. Diabetes Obes Metab 18:115–124CrossRefPubMedGoogle Scholar
  7. 7.
    Cantarelli E, Piemonti L (2011) Alternative transplantation sites for pancreatic islet grafts. Curr Diab Rep 11:364–374CrossRefPubMedGoogle Scholar
  8. 8.
    Stokes RA, Cheng K, Lalwani A et al (2017) Transplantation sites for human and murine islets. Diabetologia 60:1961–1971CrossRefPubMedGoogle Scholar
  9. 9.
    Pepper AR, Pawlick R, Bruni A et al (2017) Transplantation of human pancreatic endoderm cells reverses diabetes post transplantation in a prevascularized subcutaneous site. Stem Cell Reports 8:1689–1700CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Espes D, Lau J, Quach M, Ullsten S, Christoffersson G, Carlsson PO (2016) Rapid restoration of vascularity and oxygenation in mouse and human islets transplanted to omentum may contribute to their superior function compared to intraportally transplanted islets. Am J Transplant 16:3246–3254CrossRefPubMedGoogle Scholar
  11. 11.
    Coppens V, Heremans Y, Leuckx G et al (2013) Human blood outgrowth endothelial cells improve islet survival and function when co-transplanted in a mouse model of diabetes. Diabetologia 56:382–390CrossRefPubMedGoogle Scholar
  12. 12.
    Carlsson PO, Palm F, Mattsson G (2002) Low revascularization of experimentally transplanted human pancreatic islets. J Clin Endocrinol Metab 87:5418–5423CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang N, Richter A, Suriawinata J et al (2004) Elevated vascular endothelial growth factor production in islets improves islet graft vascularization. Diabetes 53:963–970CrossRefPubMedGoogle Scholar
  14. 14.
    Su D, Zhang N, He J et al (2007) Angiopoietin-1 production in islets improves islet engraftment and protects islets from cytokine-induced apoptosis. Diabetes 56:2274–2283CrossRefPubMedGoogle Scholar
  15. 15.
    Baum C, von Kalle C, Staal FJ et al (2004) Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 9:5–13CrossRefPubMedGoogle Scholar
  16. 16.
    De Leu N, Heremans Y, Coppens V et al (2014) Short-term overexpression of VEGF-A in mouse beta cells indirectly stimulates their proliferation and protects against diabetes. Diabetologia 57:140–147CrossRefPubMedGoogle Scholar
  17. 17.
    Brissova M, Aamodt K, Brahmachary P et al (2014) Islet microenvironment, modulated by vascular endothelial growth factor-a signaling, promotes beta cell regeneration. Cell Metab 19:498–511CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 13:759–780CrossRefPubMedGoogle Scholar
  19. 19.
    Benazra M, Lecomte MJ, Colace C et al (2015) A human beta cell line with drug inducible excision of immortalizing transgenes. Mol Metab 4:916–925CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Van Lint S, Goyvaerts C, Maenhout S et al (2012) Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res 72:1661–1671CrossRefPubMedGoogle Scholar
  21. 21.
    Kariko K, Muramatsu H, Welsh FA et al (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16:1833–1840CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Durbin AF, Wang C, Marcotrigiano J, Gehrke L (2016) RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling. MBio 7:e00833–e00816CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Staels W, Heremans Y, Leuckx G et al (2017) Conditional islet hypovascularisation does not preclude beta cell expansion during pregnancy in mice. Diabetologia 60:1051–1056CrossRefPubMedGoogle Scholar
  24. 24.
    D'Hoker J, De Leu N, Heremans Y et al (2013) Conditional hypovascularization and hypoxia in islets do not overtly influence adult beta-cell mass or function. Diabetes 62:4165–4173CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci U S A 112:14452–14459CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jansson L, Carlsson PO (2002) Graft vascular function after transplantation of pancreatic islets. Diabetologia 45:749–763CrossRefPubMedGoogle Scholar
  27. 27.
    Agudo J, Ayuso E, Jimenez V et al (2012) Vascular endothelial growth factor-mediated islet hypervascularization and inflammation contribute to progressive reduction of beta-cell mass. Diabetes 61:2851–2861CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pepper AR, Gala-Lopez B, Ziff O, Shapiro AM (2013) Revascularization of transplanted pancreatic islets and role of the transplantation site. Clin Dev Immunol 2013:352315CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Korsgren O, Andersson A, Jansson L, Sundler F (1992) Reinnervation of syngeneic mouse pancreatic islets transplanted into renal subcapsular space. Diabetes 41:130–135CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beta Cell Neogenesis (BENE), Vrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Paediatrics, Division of Paediatric EndocrinologyGhent UniversityGhentBelgium
  3. 3.Laboratory of Molecular and Cellular TherapyVrije Universiteit BrusselBrusselsBelgium
  4. 4.Department of Medicine, Section of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
  5. 5.Laboratory of Clinical and Experimental EndocrinologyKatholieke Universiteit LeuvenLeuvenBelgium
  6. 6.Department of EndocrinologyUZ BrusselBrusselsBelgium
  7. 7.Department of EndocrinologyASZ AalstAalstBelgium

Personalised recommendations