Participants and experimental procedures
This study analyses data collected in previous studies, each carried out in agreement with the Declaration of Helsinki and upon approval by the respective local ethics committees [9,10,11,12,13,14]. Participants were studied at (1) the German Diabetes Center, Düsseldorf, Germany; (2) the Karl-Landsteiner Institute for Endocrinology and Metabolism and 1st Medical Department, Hanusch Hospital, Vienna, Austria, and Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; (3) the Steno Diabetes Center, Gentofte, Denmark; (4) the Institute of Endocrinology, Prague, Czech Republic; and (5) the Clinical Research Center of the University of Texas Health Science Center, San Antonio, TX, USA.
Participants who attended the German Diabetes Center did not have type 2 diabetes at the time of recruitment, though some had a positive family history of type 2 diabetes [9]. Participants recruited in Vienna either had normal glucose tolerance (NGT), impaired glucose tolerance (IGT) or type 2 diabetes [10]. Participants from the Steno Diabetes Center were recruited from the Inter99 study and had either NGT, isolated IGT, or isolated impaired fasting glucose (IFG) [11]. Participants from the Prague Institute of Endocrinology were part of two datasets: the first one included bariatric patients with type 2 diabetes [12], the second included patients with conditions known to affect insulin sensitivity (obesity and/or polycystic ovary syndrome), without known type 2 diabetes [13]. Participants from the San Antonio Clinical Research Center were recruited through advertising within the medical centre and in local newspapers, and had glucose tolerance spanning from normal to type 2 diabetes [14]. Experimental clamp procedures at the five centres have been reported in detail in the original studies [9,10,11,12,13,14]. For all participants, the M value was calculated as the glucose infusion rate during the last 20–30 min of the test with space correction when appropriate [4]. Participants from Germany/Austria, Denmark, Texas, and from the second Czech Republic dataset also underwent a 2–3 h 75 g OGTT, while those from the first Czech Republic dataset received a standardised liquid mixed-meal test (MMT). Values from either test, the OGTT or MMT, depending on which were available, were used for the calculation of the OGIS index, as a previous study demonstrated the equivalence of OGIS from OGTT and MMT [15].
Calculation of OGIS
The approach for the derivation of OGIS has previously been provided in full [7]. Here, we briefly present its formula for the 3 h OGTT or MTT test (with glucose and insulin in SI units):
$$ {\displaystyle \begin{array}{c}\mathrm{OGIS}=1/2\times \left(\mathrm{B}+ sqrt\left({\mathrm{B}}^2+4\times \mathrm{p}5\times \mathrm{p}6\times \left(\mathrm{G}120\hbox{--} \mathrm{G}\mathrm{cl}\right)\times {\mathrm{Cl}}_{\mathrm{OGTT}}\right)\right)\\ {}\mathrm{B}=\left(\mathrm{p}5\times \left(\mathrm{G}120\hbox{--} \mathrm{G}\mathrm{cl}\right)+1\right)\times {\mathrm{Cl}}_{\mathrm{OGTT}}\\ {}{\mathrm{Cl}}_{\mathrm{OGTT}}=\mathrm{p}4\times \left(\left(\mathrm{p}1\times {\mathrm{D}}_0\hbox{--} \mathrm{V}\times \left(\mathrm{G}180\hbox{--} \mathrm{G}120\right)/\mathrm{T}\right)/\mathrm{G}120+\mathrm{p}3/\mathrm{G}0\right)/\left(\mathrm{I}120\hbox{--} \mathrm{I}0+\mathrm{p}2\right)\end{array}} $$
(1)
where G0, G120, G180 is glucose at 0, 120, 180 min, I0 and I120 is insulin at 0 and 120 min, p1 = 2.89, p2 = 1618, p3 = 779, p4 = 2642, p5 = 11.5 × 10−3, p6 = 117, V = 104 (glucose distribution volume, ml/m2), T = 60 (time interval between G180 and G120, min), Gcl = 5 (typical clamp glucose concentration, mmol/l), and D0 is glucose dose of the OGTT or MTT (in mmol/m2, i.e. normalised for body surface area); sqrt is the square root operator. In the case of the 2 h test, the OGIS formula is similar, but G180 is replaced by G120, G120 and I120 are replaced by G90 and I90, respectively, and T = 30; p1–p6 parameters become: p1 = 6.50, p2 = 1951, p3 = 4514, p4 = 792, p5 = 11.8 × 10−3, p6 = 173.
Prediction model of clamp-derived insulin sensitivity
The prediction of the M value from OGIS was based on the development of a multivariable model. We hypothesised that when some individuals are studied with an oral glucose challenge, data on some basic variables are always available: sex, age, BMI, fasting glucose and insulin concentrations and 2 h glucose concentration. These variables were considered as possible predictors of the M value along with OGIS. From the above variables, we also derived some categorical variables: glucose tolerance status (according to ADA 2010 criteria, i.e. NGT, IFG and/or IGT, and type 2 diabetes [16]), the obesity category (BMI < 25 kg/m2, lean; BMI ≥ 30 kg/m2, obese; overweight otherwise) and age category (elderly if ≥ 50 years). The total dataset (513 individuals) was randomly split into training and validation datasets (70% and 30%, respectively, according to common practice [17]). In the training dataset, all potential predictors were included in a linear regression model providing R2 statistics. We then applied the stepwise model selection approach, based on Akaike’s information criterion (AIC), to determine the optimal prediction model (the lower the AIC value, the better the model) [18], including both backward and forward search strategies. The optimal prediction model thus identified was then applied to the validation dataset.
Insulin sensitivity in subgroups
In the validation dataset, participants were divided into subgroups according to the following categories: glucose tolerance, obesity and age. We then analysed possible differences in insulin sensitivity among the subgroups, according to both the real (clamp–derived) and the model-predicted M value.
Statistics
All analyses indicated in the Methods were performed in R (The R Foundation for Statistical Computing Platform, Vienna, Austria). Data are presented as mean ± standard error (SEM), unless otherwise specified. In both the training and validation datasets, comparison between observed and predicted M value was performed by linear regression and test of equivalence [19] (the two one-sided paired t test) on logarithmically transformed values, in order to achieve homoscedastic prediction models. Bland–Altman plots including limits of agreement were also reported. Further validation of M value prediction was performed by leave-one-out cross-validation (LOOCV) on the training dataset, and related cross-validated R2 statistics [20]. In the validation dataset, tests on subgroups were performed using ANOVA (on logarithmically transformed data). A two-sided p value < 0.05 was considered statistically significant.