Advertisement

Diabetologia

, Volume 61, Issue 2, pp 399–412 | Cite as

Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes

  • Anaïs Szpigel
  • Isabelle Hainault
  • Aurélie Carlier
  • Nicolas Venteclef
  • Anne-Françoise Batto
  • Eric Hajduch
  • Catherine Bernard
  • Alain Ktorza
  • Jean-François Gautier
  • Pascal Ferré
  • Olivier Bourron
  • Fabienne Foufelle
Article

Abstract

Aims/hypothesis

Obesity and type 2 diabetes are concomitant with low-grade inflammation affecting insulin sensitivity and insulin secretion. Recently, the thioredoxin interacting protein (TXNIP) has been implicated in the activation process of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. In this study, we aim to determine whether the expression of TXNIP is altered in the circulating immune cells of individuals with type 2 vs type 1 diabetes and whether this can be related to specific causes and consequences of inflammation.

Methods

The expression of TXNIP, inflammatory markers, markers of the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress and enzymes involved in sphingolipid metabolism was quantified by quantitative reverse transcription real-time PCR (qRT-PCR) in peripheral blood mononuclear cells (PBMCs) of 13 non-diabetic individuals, 23 individuals with type 1 diabetes and 81 with type 2 diabetes. A lipidomic analysis on the plasma of 13 non-diabetic individuals, 35 individuals with type 1 diabetes and 94 with type 2 diabetes was performed. The effects of ER stress or of specific lipids on TXNIP and inflammatory marker expression were analysed in human monocyte-derived macrophages (HMDMs) and THP-1 cells.

Results

The expression of TXNIP and inflammatory and UPR markers was increased in the PBMCs of individuals with type 2 diabetes when compared with non-diabetic individuals or individuals with type 1 diabetes. TXNIP expression was significantly correlated with plasma fasting glucose, plasma triacylglycerol concentrations and specific UPR markers. Induction of ER stress in THP-1 cells or cultured HMDMs led to increased expression of UPR markers, TXNIP, NLRP3 and IL-1β. Conversely, a chemical chaperone reduced the expression of UPR markers and TXNIP in PBMCs of individuals with type 2 diabetes. The lipidomic plasma analysis revealed an increased concentration of saturated dihydroceramide and sphingomyelin in individuals with type 2 diabetes when compared with non-diabetic individuals and individuals with type 1 diabetes. In addition, the expression of specific enzymes of sphingolipid metabolism, dihydroceramide desaturase 1 and sphingomyelin synthase 1, was increased in the PBMCs of individuals with type 2 diabetes. Palmitate or C2 ceramide induced ER stress in macrophages as well as increased expression of TXNIP, NLRP3 and IL-1β.

Conclusions/interpretation

In individuals with type 2 diabetes, circulating immune cells display an inflammatory phenotype that can be linked to ER stress and TXNIP expression. Immune cell ER stress can in turn be linked to the specific exogenous and endogenous lipid environment found in type 2 diabetes.

Keywords

Ceramide Diabetes mellitus Endoplasmic reticulum stress Inflammasome Macrophages NLRP3 Peripheral blood mononuclear cells Sphingolipids TXNIP 

Abbreviations

ATF6

ER stress activated transcription factor 6

BMDM

Bone marrow-derived macrophages

CCL2

Chemokine ligand 2

ChREBP

Carbohydrate response element binding protein

ER

Endoplasmic reticulum

HMDM

Human monocyte-derived macrophage

IRE1

Inositol requiring enzyme 1

NLRP3

NOD-like receptor family, pyrin domain containing 3

PBA

4-Phenylbutyric acid

PBMC

Peripheral blood mononuclear cell

PERK

Protein kinase R-like endoplasmic reticulum kinase

qRT-PCR

Quantitative reverse transcription real-time PCR

TLR

Toll-like receptor

TUDCA

Tauroursodeoxycholic acid

TXNIP

Thioredoxin interacting protein

UPR

Unfolded protein response

XBP1

X box binding protein 1

Notes

Acknowledgements

We are grateful to the donors for allowing us to use the blood samples and to the animal platform of the Centre de Recherche des Cordeliers for taking care of the animals. We thank H. Le Stunff (University Denis Diderot) for useful discussions, F. Fumeron (University Denis Diderot) for his help with statistical methods and F. Alzaïd (Centre de Recherche des Cordeliers) for editing the manuscript.

Data availability

The data supporting the results reported in the article are available on request from the corresponding author.

Funding

This work was supported by a grant from the ‘Fondation pour la Recherche Médicale’ Equipe FRM DEQ20140329504.

Duality of interest

CB is and AK was an employee of Servier Pharmaceutical. AS received a grant from Servier Pharmaceutical during the conduct of this study. All other authors declare that there is no duality of interest associated with their contribution to this manuscript.

Contribution statement

AS contributed to the experimental design and data acquisition and wrote the manuscript. IH and AFB contributed to the experimental design and data acquisition and reviewed/edited the manuscript. NV contributed to the experimental design, interpretation of data and reviewed/edited the manuscript. AC, JFG and OB assisted in the collection of human specimens at Lariboisière and Pitié-Salpêtrière hospitals, interpretation of data and reviewed/edited the manuscript. OB also contributed to the conception and design of the study. EH contributed to interpretation of data and reviewed/edited the manuscript. CB and AK contributed to the experimental design and reviewed/edited the manuscript. PF contributed to the experimental design and data interpretation and wrote the manuscript. FF contributed to the experimental design and data analysis and interpretation, wrote the manuscript and is the guarantor of this work and, as such, had full access to all the data in the study. She takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors approved the final version of the manuscript.

Supplementary material

125_2017_4462_MOESM1_ESM.pdf (702 kb)
ESM (PDF 701 kb)

References

  1. 1.
    Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18:363–374CrossRefPubMedGoogle Scholar
  2. 2.
    Devevre EF, Renovato-Martins M, Clement K, Sautes-Fridman C, Cremer I, Poitou C (2015) Profiling of the three circulating monocyte subpopulations in human obesity. J Immunol 194:3917–3923CrossRefPubMedGoogle Scholar
  3. 3.
    Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107CrossRefPubMedGoogle Scholar
  4. 4.
    Ehses JA, Perren A, Eppler E et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370CrossRefPubMedGoogle Scholar
  5. 5.
    He Y, Hara H, Nunez G (2016) Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41:1012–1021CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lerner AG, Upton JP, Praveen PVK et al (2012) IRE1α Induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 16:250–264CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Oslowski CM, Hara T, OʼSullivan-Murphy B et al (2012) Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab 16:265–273CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhou RB, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140CrossRefPubMedGoogle Scholar
  9. 9.
    Nishiyama A, Matsui M, Iwata S et al (1999) Identification of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 274:21645–21650CrossRefPubMedGoogle Scholar
  10. 10.
    Shalev A (2014) Minireview: thioredoxin-interacting protein: regulation and function in the pancreatic β-cell. Mol Endocrinol 28:1211–1220CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kammoun HL, Chabanon H, Hainault I et al (2009) GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 119:1201–1215CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hage Hassan R, Hainault I, Vilquin JT et al (2012) Endoplasmic reticulum stress does not mediate palmitate-induced insulin resistance in mouse and human muscle cells. Diabetologia 55:204–214CrossRefPubMedGoogle Scholar
  13. 13.
    Tran TTT, Postal BG, Demignot S et al (2016) Short term palmitate supply impairs intestinal insulin signaling via ceramide production. J Biol Chem 291:16328–16338CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Parikh H, Carlsson E, Chutkow WA et al (2007) TXNIP regulates peripheral glucose metabolism in humans. PLoS Med 4:868–879CrossRefGoogle Scholar
  15. 15.
    Shaked M, Ketzinel-Gilad M, Ariav Y, Cerasi E, Kaiser N, Leibowitz G (2009) Insulin counteracts glucotoxic effects by suppressing thioredoxin-interacting protein production in INS-1E beta cells and in Psammomys obesus pancreatic islets. Diabetologia 52:636–644CrossRefPubMedGoogle Scholar
  16. 16.
    Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, Ayer DE (2008) Glucose sensing by MondoA : Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl Acad Sci U S A 105:6912–6917CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Svoboda M, Tastenoy M, Zhang Y et al (2013) D-glucose- and 3-O-methyl-D-glucose-induced upregulation of selected genes in rat hepatocytes and INS1E cells: re-evaluation of the possible role of hexose phosphorylation. Mol Med Rep 8:829–836CrossRefPubMedGoogle Scholar
  18. 18.
    Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Parker R, Phan T, Baumeister P et al (2001) Identification of TFII-I as the endoplasmic reticulum stress response element binding factor ERSF: its autoregulation by stress and interaction with ATF6. Mol Cell Biol 21:3220–3233CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891CrossRefPubMedGoogle Scholar
  21. 21.
    Vandanmagsar B, Youm YH, Ravussin A et al (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hage Hassan R, Pacheco de Sousa AC, Mahfouz R et al (2016) Sustained action of ceramide on the insulin signaling pathway in muscle cells: implication of the double-stranded RNA-activated protein kinase. J Biol Chem 291:3019–3029CrossRefPubMedGoogle Scholar
  23. 23.
    Senkal CE, Ponnusamy S, Manevich Y et al (2011) Alteration of ceramide synthase 6/C-16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network. J Biol Chem 286:42446–42458CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Boon J, Hoy AJ, Stark R et al (2013) Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes 62:401–410CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Laybutt DR, Preston AM, Akerfeldt MC et al (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752–763CrossRefPubMedGoogle Scholar
  27. 27.
    Cunha DA, Hekerman P, Ladriere L et al (2008) Initiation and execution of lipotoxic ER stress in pancreatic β-cells. J Cell Sci 121:2308–2318CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL (2004) Free fatty acids and Cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappa B and endoplasmic reticulum stress. Endocrinology 145:5087–5096CrossRefPubMedGoogle Scholar
  29. 29.
    Nakatani Y, Kaneto H, Kawamori D et al (2005) Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem 280:847–851CrossRefPubMedGoogle Scholar
  30. 30.
    Ozcan U, Yilmaz E, Ozcan L et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Feng B, Yao PM, Li YK et al (2003) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5:781–792CrossRefPubMedGoogle Scholar
  33. 33.
    Erbay E, Babaev VR, Mayers JR et al (2009) Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat Med 15:1383–1391CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Robblee MM, Kim CC, Abate JP et al (2016) Saturated fatty acids engage an IRE1α-dependent pathway to activate the NLRP3 inflammasome in myeloid cells. Cell Rep 14:2611–2623CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lenin R, Sankaramoorthy A, Mohan V, Balasubramanyam M (2015) Altered immunometabolism at the interface of increased endoplasmic reticulum (ER) stress in patients with type 2 diabetes. J Leukoc Biol 98:615–622CrossRefPubMedGoogle Scholar
  36. 36.
    Bronner DN, Abuaita BH, Chen XY et al (2015) Endoplasmic reticulum stress activates the inflammasome via NLRP3-and caspase-2-driven mitochondrial damage. Immunity 43:451–462CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhang X, Zhang JH, Chen XY et al (2015) Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxid Redox Signal 22:848–870CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Li ZQ, Fan YF, Liu J et al (2012) Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler Thromb Vasc Biol 32:1577–1584CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hu W, Ross J, Geng TY, Brice SE, Cowart LA (2011) Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance. J Biol Chem 286:16596–16605CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rocha DM, Caldas AP, Oliveira LL, Bressan J, Hermsdorff HH (2016) Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 244:211–215CrossRefPubMedGoogle Scholar
  41. 41.
    Sims K, Haynes CA, Kelly S et al (2010) Kdo2-Lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. J Biol Chem 285:38568–38579CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chavez JA, Summers SA (2012) A ceramide-centric view of insulin resistance. Cell Metab 15:585–594CrossRefPubMedGoogle Scholar
  43. 43.
    Serlie MJ, Meijer AJ, Groener JE, Ackermans MT, Aerts JF, Sauerwein HP (2007) Chronic treatment with pioglitazone does not protect obese patients with diabetes mellitus type II from free fatty acid-induced insulin resistance. J Clin Endocrinol Metab 92:166–171CrossRefPubMedGoogle Scholar
  44. 44.
    Bellis C, Kulkarni H, Mamtani M et al (2014) human plasma lipidome is pleiotropically associated with cardiovascular risk factors and death. Circ-Cardiovasc. Gene 7:854–863Google Scholar
  45. 45.
    Mamtani M, Meikle PJ, Kulkarni H et al (2014) Plasma dihydroceramide species associate with waist circumference in Mexican American families. Obesity 22:950–956CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Anaïs Szpigel
    • 1
    • 2
  • Isabelle Hainault
    • 1
  • Aurélie Carlier
    • 3
  • Nicolas Venteclef
    • 1
  • Anne-Françoise Batto
    • 1
  • Eric Hajduch
    • 1
  • Catherine Bernard
    • 2
  • Alain Ktorza
    • 2
  • Jean-François Gautier
    • 1
    • 4
  • Pascal Ferré
    • 1
    • 5
  • Olivier Bourron
    • 1
    • 3
  • Fabienne Foufelle
    • 1
  1. 1.Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des CordeliersParisFrance
  2. 2.Institut de Recherches ServierSuresnesFrance
  3. 3.Department of Endocrinology, Nutrition, and Diabetes, Pitié-Salpêtrière HospitalAssistance Publique-Hôpitaux de ParisParisFrance
  4. 4.Department of Diabetes and Endocrinology, Lariboisière Hospital, DHU FIREAssistance Publique-Hôpitaux de ParisParisFrance
  5. 5.Department of Oncology and Endocrine Biochemistry, Pitié-Salpêtrière HospitalAssistance Publique-Hôpitaux de ParisParisFrance

Personalised recommendations