, Volume 60, Issue 12, pp 2453–2462 | Cite as

The MST3/STK24 kinase mediates impaired fasting blood glucose after a high-fat diet

  • Cristina Iglesias
  • Ebel Floridia
  • Miriam Sartages
  • Begoña Porteiro
  • María Fraile
  • Ana Guerrero
  • Diana Santos
  • Juan Cuñarro
  • Sulay Tovar
  • Rubén Nogueiras
  • Celia M. Pombo
  • Juan Zalvide



The identification of mediators in the pathogenesis of type 2 diabetes mellitus is essential for the full understanding of this disease. Protein kinases are especially important because of their potential as pharmacological targets. The goal of this study was to investigate whether mammalian sterile-20 3 (MST3/STK24), a stress-regulated kinase, is involved in metabolic alterations in obesity.


Glucose regulation of Mst3 (also known as Stk24)-knockout mice was analysed both in 129;C57 mixed background mice and in C57/BL6J mice fed normally or with a high-fat diet (HFD). This work was complemented with an analysis of the insulin signalling pathway in cultured human liver cells made deficient in MST3 using RNA interference.


MST3 is phosphorylated in the livers of mice subject to an obesity-promoting HFD, and its deficiency lowers the hyperglycaemia, hyperinsulinaemia and insulin resistance that the animals develop with this diet, an effect that is seen even without complete inactivation of the kinase. Lack of MST3 results in activation of the insulin signalling pathway downstream of IRS1, in both cultured liver cells and the liver of animals after HFD. This effect increases the inhibition of forkhead box (FOX)O1, with subsequent downregulation of the expression of gluconeogenic enzymes.


MST3 inhibits the insulin signalling pathway and is important in the development of insulin resistance and impaired blood glucose levels after an HFD.


G6PC GCKIII kinases Gluconeogenesis Impaired fasting glucose Insulin resistance 



Akt serine/threonine kinase


AMP-activated protein kinase


N6,2′-O-dibutyryladenosine 3′,5′-cyclic monophosphate


Extracellular signal-regulated kinase 1


FGR proto-oncogene, Src family tyrosine kinase


Forkhead box


Glyceraldehyde-3-phospate dehydrogenase


Germinal centre kinase III


Glycogen synthase kinase 3β


High-fat diet


Insulin receptor


Insulin tolerance test


c-Jun N-terminal Kinase


Glucose disappearance rate


Mammalian sterile-20


N-MYC downstream regulated gene 1


Phosphoinositide 3-kinase


Protein kinase A


Pyruvate tolerance test


Non-targeting shRNA


Small hairpin (RNA)


Ste20/oxidant stress response kinase 1




Serine–threonine kinase





We thank: all members of the MeMoEn Research Group for helpful discussions, and C. Diéguez (Departamento de Fisioloxía, Universidade de Santiago de Compostela, Spain) for critically reading the manuscript; D. Wu (Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, USA) for advice on PCR genotyping; and P. Ramadoss (Beth Israel Deaconess Medical Center, USA), for the G6PC promoter plasmid.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.


Financial support is gratefully acknowledged from: the Ministerio de Economía y Competitividad (SAF2011-24940 and SAF2014-56899-R and BFU2015-70664R); the Consellería de Cultura, Educación e Ordenación Universitaria (GPC2013/032, ED431B 2016, 2015-CP080 and 2016-PG057); the Astra Zeneca Foundation; the European Foundation for the Study of Diabetes; Centro Singular de Investigación de Galicia (accreditation 2016–2019, ED431G/05); the European Regional Development Fund (ERDF); and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn). CIBERobn is an initiative of the Instituto de Salud Carlos III (ISCIII) of Spain which is supported by FEDER funds. CI and EF are recipients of a predoctoral contract from Xunta de Galicia; DS is recipient of an Erasmus plus fellowship, financed by the EU. JZ and CMP are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Duality of interests

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

CI, ST, RN, CMP and JZ made substantial contributions to conception and design of the study. CI, EF, MS, BP, MF, AG, DS, JC and ST contributed substantially to the acquisition of data. CI, ST, RN, CMP and JZ contributed substantially to the analysis and interpretation of data. ST, RN, CMP and JZ drafted the manuscript. All authors critically revised the manuscript for important intellectual content. All authors gave final approval of the version to be published. JZ and CMP are responsible for the integrity of the work as a whole.

Supplementary material

125_2017_4433_MOESM1_ESM.pdf (7.7 mb)
ESM (PDF 7839 kb)


  1. 1.
    Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF (2010) Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metrics 8:29CrossRefGoogle Scholar
  2. 2.
    Meigs JB, Muller DC, Nathan DM, Blake DR, Andres R, Baltimore Longitudinal Study of Aging (2003) The natural history of progression from normal glucose tolerance to type 2 diabetes in the Baltimore Longitudinal Study of Aging. Diabetes 52:1475–1484CrossRefPubMedGoogle Scholar
  3. 3.
    Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271:665–668CrossRefPubMedGoogle Scholar
  4. 4.
    Manieri E, Sabio G (2015) Stress kinases in the modulation of metabolism and energy balance. J Mol Endocrinol 55:R11–R22CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sabio G, Davis RJ (2010) cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends Biochem Sci 35:490–496CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Basu R, Barosa C, Jones J et al (2013) Pathogenesis of prediabetes: role of the liver in isolated fasting hyperglycemia and combined fasting and postprandial hyperglycemia. J Clin Endocrinol Metab 98:E409–E417CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91CrossRefPubMedGoogle Scholar
  8. 8.
    Sabio G, Cavanagh-Kyros J, Ko HJ et al (2009) Prevention of steatosis by hepatic JNK1. Cell Metab 10:491–498CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148:852–871CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gruben N, Shiri-Sverdlov R, Koonen DP, Hofker MH (2014) Nonalcoholic fatty liver disease: a main driver of insulin resistance or a dangerous liaison? Biochim Biophys Acta 1842:2329–2343CrossRefPubMedGoogle Scholar
  11. 11.
    Pombo CM, Force T, Kyriakis J, Nogueira E, Fidalgo M, Zalvide J (2007) The GCK II and III subfamilies of the STE20 group kinases. Front Biosci 12:850–859CrossRefPubMedGoogle Scholar
  12. 12.
    Ling P, Lu TJ, Yuan CJ, Lai MD (2008) Biosignaling of mammalian Ste20-related kinases. Cell Signal 20:1237–1247CrossRefPubMedGoogle Scholar
  13. 13.
    Sugden PH, McGuffin LJ, Clerk A (2013) SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions. Biochem J 454:13–30CrossRefPubMedGoogle Scholar
  14. 14.
    Madsen CD, Hooper S, Tozluoglu M et al (2015) STRIPAK components determine mode of cancer cell migration and metastasis. Nat Cell Biol 17:68–80CrossRefPubMedGoogle Scholar
  15. 15.
    Lorber B, Howe ML, Benowitz LI, Irwin N (2009) Mst3b, An Ste20-like kinase, regulates axon regeneration in mature CNS and PNS pathways. Nat Neurosci 12:1407–1414CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nerstedt A, Cansby E, Andersson CX et al (2012) Serine/threonine protein kinase 25 (STK25): a novel negative regulator of lipid and glucose metabolism in rodent and human skeletal muscle. Diabetologia 55:1797–1807CrossRefPubMedGoogle Scholar
  17. 17.
    Cansby E, Amrutkar M, Manneras Holm L et al (2013) Increased expression of STK25 leads to impaired glucose utilization and insulin sensitivity in mice challenged with a high-fat diet. FASEB J 27:3660–3671CrossRefPubMedGoogle Scholar
  18. 18.
    Amrutkar M, Cansby E, Chursa U et al (2015) Genetic disruption of protein kinase STK25 ameliorates metabolic defects in a diet-induced type 2 diabetes model. Diabetes 64:2791–2804CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Amrutkar M, Cansby E, Nunez-Duran E et al (2015) Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH. FASEB J 29:1564–1576CrossRefPubMedGoogle Scholar
  20. 20.
    Amrutkar M, Kern M, Nunez-Duran E et al (2016) Protein kinase STK25 controls lipid partitioning in hepatocytes and correlates with liver fat content in humans. Diabetologia 59:341–353CrossRefPubMedGoogle Scholar
  21. 21.
    Ramadoss P, Unger-Smith NE, Lam FS, Hollenberg AN (2009) STAT3 targets the regulatory regions of gluconeogenic genes in vivo. Mol Endocrinol 23:827–837CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang Y, Tang W, Zhang H et al (2013) A network of interactions enables CCM3 and STK24 to coordinate UNC13D-driven vesicle exocytosis in neutrophils. Dev Cell 27:215–226CrossRefPubMedGoogle Scholar
  23. 23.
    Fisher SJ, Kahn CR (2003) Insulin signaling is required for insulin's direct and indirect action on hepatic glucose production. J Clin Invest 111:463–468CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fuller SJ, McGuffin LJ, Marshall AK et al (2012) A novel non-canonical mechanism of regulation of MST3 (mammalian Sterile20-related kinase 3). Biochem J 442:595–610CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hotamisligil GS, Davis RJ (2016) Cell signaling and stress responses. Cold Spring Harb Perspect Biol 8: DOI:
  26. 26.
    Boj SF, van Es JH, Huch M et al (2012) Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 151:1595–1607CrossRefPubMedGoogle Scholar
  27. 27.
    Wang SR, Pessah M, Infante J, Catala D, Salvat C, Infante R (1988) Lipid and lipoprotein metabolism in Hep G2 cells. Biochim Biophys Acta 961:351–363CrossRefPubMedGoogle Scholar
  28. 28.
    Garcia-Martinez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416:375–385CrossRefPubMedGoogle Scholar
  29. 29.
    Montgomery MK, Hallahan NL, Brown SH et al (2013) Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56:1129–1139CrossRefPubMedGoogle Scholar
  30. 30.
    Alessi DR, Andjelkovic M, Caudwell B et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551PubMedPubMedCentralGoogle Scholar
  31. 31.
    Jacinto E, Facchinetti V, Liu D et al (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127:125–137CrossRefPubMedGoogle Scholar
  32. 32.
    Facchinetti V, Ouyang W, Wei H et al (2008) The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27:1932–1943CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular e Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria de Santiago (IDIS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de CompostelaSpain
  3. 3.Cell Proliferation Group, MRC Clinical Sciences CentreImperial College LondonLondonUK

Personalised recommendations