, Volume 60, Issue 8, pp 1541–1549 | Cite as

Retinopathy with central oedema in an INS C94Y transgenic pig model of long-term diabetes

  • Kristina J. H. Kleinwort
  • Barbara Amann
  • Stefanie M. Hauck
  • Sieglinde Hirmer
  • Andreas Blutke
  • Simone Renner
  • Patrizia B. Uhl
  • Karina Lutterberg
  • Walter Sekundo
  • Eckhard Wolf
  • Cornelia A. Deeg



Diabetic retinopathy is a severe complication of diabetes mellitus that often leads to blindness. Because the pathophysiology of diabetic retinopathy is not fully understood and novel therapeutic interventions require testing, there is a need for reliable animal models that mimic all the complications of diabetic retinopathy. Pig eyes share important anatomical and physiological similarities with human eyes. Previous studies have demonstrated that INS C94Y transgenic pigs develop a stable diabetic phenotype and ocular alterations such as cataracts. The aim of this study was to conduct an in-depth analysis of pathological changes in retinas from INS C94Y pigs exposed to hyperglycaemia for more than 2 years, representing a chronic diabetic condition.


Eyes from six INS C94Ypigs and six age-matched control littermates were analysed via histology and immunohistochemistry. For histological analyses of retinal (layer) thickness, sections were stained with H&E or Mallory’s trichrome. For comparison of protein expression patterns and vessel courses, sections were stained with different antibodies in immunohistochemistry. Observed lesions were compared with reported pathologies in human diabetic retinopathy.


INS C94Ypigs developed several signs of diabetic retinopathy similar to those seen in humans, such as intraretinal microvascular abnormalities, symptoms of proliferative diabetic retinopathy and central retinal oedema in a region that is cone rich, like the human macula.


The INS C94Ypig is an interesting model for studying the pathophysiology of diabetic retinopathy and for testing novel therapeutic strategies.


Animal model Cataract Colour vision Diabetes Eye disease Macular oedema Pathophysiologic processes Retinopathy Vascular complications 





Dolichos biflorus agglutinin


Glutamine synthetase


Lycopersicon esculentum lectin


Neurofilament heavy chain


Smooth muscle actin



The authors thank S. Nüske and A. Scholz (Teaching and Experimental Farm, LMU Munich) for providing pig control tissues. We thank R. Degroote (Institute of Animal Physiology, LMU Munich) for critically revising the manuscript and R. Wanke (Institute of Animal Pathology, LMU Munich) for critical discussions.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.


This work was supported by the von Behring-Röntgen Foundation (63-0004); the Foundation for the Support of Science in Ophthalmology Marburg e.V. (to CAD); the Federal Ministry of Education and Research (16EX1024A); and the German Centre for Diabetes Research (DZD) (to EW).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

CAD conceived and designed the experiments. KJHK, BA, SH, SMH, PBU, KL and CAD performed the experiments. KJHK, BA, SH, SMH, PBU, KL, WS, EW and CAD analysed the data. SR, AB and EW developed and characterised the INS C94Ypig model. CAD wrote the manuscript. All authors critically read and provided comments on the manuscript. All authors approved the final version to be published. CAD is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.


  1. 1.
    Kharroubi AT, Darwish HM (2015) Diabetes mellitus: the epidemic of the century. World J Diab 6:850–867CrossRefGoogle Scholar
  2. 2.
    Ponto KA, Koenig J, Peto T et al (2016) Prevalence of diabetic retinopathy in screening-detected diabetes mellitus: results from the Gutenberg Health Study (GHS). Diabetologia 59:1913–1919CrossRefPubMedGoogle Scholar
  3. 3.
    Tan GS, Cheung N, Simo R, Cheung GC, Wong TY (2017) Diabetic macular oedema. Lancet Diabetes Endocrinol 5:143–155CrossRefPubMedGoogle Scholar
  4. 4.
    Antonetti DA, Barber AJ, Bronson SK et al (2006) Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55:2401–2411CrossRefPubMedGoogle Scholar
  5. 5.
    Jiang X, Yang L, Luo Y (2015) Animal models of diabetic retinopathy. Curr Eye Res 40:761–771CrossRefPubMedGoogle Scholar
  6. 6.
    Berkowitz BA, Bissig D, Ye Y, Valsadia P, Kern TS, Roberts R (2012) Evidence for diffuse central retinal edema in vivo in diabetic male Sprague Dawley rats. PLoS One 7:e29619CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Clermont A, Chilcote TJ, Kita T et al (2011) Plasma kallikrein mediates retinal vascular dysfunction and induces retinal thickening in diabetic rats. Diabetes 60:1590–1598CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Huber G, Heynen S, Imsand C et al (2010) Novel rodent models for macular research. PLoS One 5:e13403CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hendrickson A, Hicks D (2002) Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina. Exp Eye Res 74:435–444CrossRefPubMedGoogle Scholar
  10. 10.
    Chandler MJ, Smith PJ, Samuelson DA, MacKay EO (1999) Photoreceptor density of the domestic pig retina. Vet Ophthalmol 2:179–184CrossRefPubMedGoogle Scholar
  11. 11.
    Renner S, Braun-Reichhart C, Blutke A et al (2013) Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes 62:1505–1511CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Albl B, Haesner S, Braun-Reichhart C et al (2016) Tissue sampling guides for porcine biomedical models. Toxicol Pathol 44:414–420CrossRefPubMedGoogle Scholar
  13. 13.
    Wolf E, Braun-Reichhart C, Streckel E, Renner S (2014) Genetically engineered pig models for diabetes research. Transgenic Res 23:27–38CrossRefPubMedGoogle Scholar
  14. 14.
    Chou J, Rollins S, Fawzi AA (2014) Role of endothelial cell and pericyte dysfunction in diabetic retinopathy: review of techniques in rodent models. Adv Exp Med Biol 801:669–675CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Higgins PJ, Garlick RL, Bunn HF (1982) Glycosylated hemoglobin in human and animal red cells. Role of glucose permeability. Diabetes 31:743–748CrossRefPubMedGoogle Scholar
  16. 16.
    Garca M, Ruiz-Ederra J, Hernandez-Barbachano H, Vecino E (2005) Topography of pig retinal ganglion cells. J Comp Neurol 486:361–372CrossRefPubMedGoogle Scholar
  17. 17.
    Amann B, Kleinwort KJ, Hirmer S et al (2016) Expression and distribution pattern of aquaporin 4, 5 and 11 in retinas of 15 different species. Int J Mol Sci 17:E1145CrossRefPubMedGoogle Scholar
  18. 18.
    Amann B, Hirmer S, Hauck SM, Kremmer E, Ueffing M, Deeg CA (2014) True blue: S-opsin is widely expressed in different animal species. J Anim Physiol Anim Nutr (Berl) 98:32–42CrossRefGoogle Scholar
  19. 19.
    Lavin DP, White MF, Brazil DP (2016) IRS proteins and diabetic complications. Diabetologia 59:2280–2291CrossRefPubMedGoogle Scholar
  20. 20.
    Stitt AW, Curtis TM, Chen M et al (2016) The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 51:156–186CrossRefPubMedGoogle Scholar
  21. 21.
    Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5:444–456CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chronopoulos A, Roy S, Beglova E, Mansfield K, Wachtman L, Roy S (2015) Hyperhexosemia-induced retinal vascular pathology in a novel primate model of diabetic retinopathy. Diabetes 64:2603–2608CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Vujosevic S, Midena E (2013) Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Muller cells alterations. J Diabetes Res 2013:905058PubMedPubMedCentralGoogle Scholar
  24. 24.
    Diabetic Retinopathy Clinical Research Network (2011) Rationale for the diabetic retinopathy clinical research network treatment protocol for center-involved diabetic macular edema. Ophthalmology 118:e5–e14CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Broe R, Rasmussen ML, Frydkjaer-Olsen U et al (2014) Retinal vessel calibers predict long-term microvascular complications in type 1 diabetes: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987). Diabetes 63:3906–3914CrossRefPubMedGoogle Scholar
  26. 26.
    Broe R (2015) Early risk stratification in pediatric type 1 diabetes. Acta Ophthalmol 93(Thesis 1):1–19CrossRefPubMedGoogle Scholar
  27. 27.
    Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fong DS, Aiello L, Gardner TW et al (2004) Retinopathy in diabetes. Diabetes Care 27(Suppl 1):S84–S87CrossRefPubMedGoogle Scholar
  29. 29.
    Chous AP, Richer SP, Gerson JD, Kowluru RA (2016) The diabetes visual function supplement study (DiVFuSS). Br J Ophthalmol 100:227–234CrossRefPubMedGoogle Scholar
  30. 30.
    Pannicke T, Ivo Chao T, Reisenhofer M, Francke M, Reichenbach A (2017) Comparative electrophysiology of retinal Müller glial cells—a survey on vertebrate species. Glia 65:533–568CrossRefPubMedGoogle Scholar
  31. 31.
    Pannicke T, Iandiev I, Wurm A et al (2006) Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes 55:633–639CrossRefPubMedGoogle Scholar
  32. 32.
    Sorrentino FS, Allkabes M, Salsini G, Bonifazzi C, Perri P (2016) The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy. Life Sci 162:54–59CrossRefPubMedGoogle Scholar
  33. 33.
    Iandiev I, Uckermann O, Pannicke T et al (2006) Glial cell reactivity in a porcine model of retinal detachment. Investig Ophthalmol Vis Sci 47:2161–2171CrossRefGoogle Scholar
  34. 34.
    Abbott A (2015) Inside the first pig biobank. Nature 519:397–398CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Kristina J. H. Kleinwort
    • 1
  • Barbara Amann
    • 1
  • Stefanie M. Hauck
    • 2
    • 3
  • Sieglinde Hirmer
    • 1
  • Andreas Blutke
    • 4
  • Simone Renner
    • 3
    • 5
  • Patrizia B. Uhl
    • 1
  • Karina Lutterberg
    • 1
  • Walter Sekundo
    • 6
  • Eckhard Wolf
    • 3
    • 5
  • Cornelia A. Deeg
    • 7
  1. 1.Institute of Animal Physiology, Department of Veterinary SciencesLMU MunichMunichGermany
  2. 2.Research Unit Protein Science, Helmholtz Zentrum MünchenGerman Research Centre for Environmental Health GmbHMunichGermany
  3. 3.German Centre for Diabetes Research (DZD)NeuherbergGermany
  4. 4.Institute of Veterinary Pathology, Centre for Clinical Veterinary MedicineLMU MunichMunichGermany
  5. 5.Molecular Animal Breeding and Biotechnology, Gene CentreLMU MunichMunichGermany
  6. 6.Department of OphthalmologyPhilipps University of MarburgMarburgGermany
  7. 7.Experimental OphthalmologyPhilipps University of MarburgMarburgGermany

Personalised recommendations