, Volume 60, Issue 8, pp 1550–1558 | Cite as

Metformin prevents ischaemic ventricular fibrillation in metabolically normal pigs

  • Li Lu
  • Shuyu Ye
  • Rebecca L. Scalzo
  • Jane E. B. Reusch
  • Clifford R. Greyson
  • Gregory G. Schwartz



Metformin is the drug most often used to treat type 2 diabetes. Evidence suggests that metformin may reduce mortality of individuals with type 2 diabetes, but the mechanism of such an effect is unknown and outcomes of metformin treatment in people without diabetes have not been determined. If metformin favourably affected mortality of non-diabetic individuals, it might have even broader therapeutic utility. We evaluated the effect of metformin on myocardial energetics and ischaemic ventricular fibrillation (VF) in metabolically normal pigs.


Domestic farm pigs were treated with metformin (30 mg kg−1 day−1 orally for 2–3 weeks; n = 36) or received no treatment (n = 37). Under anaesthesia, pigs underwent up to 90 min low-flow regional myocardial ischaemia followed by 45 min of reperfusion. Pigs were monitored for arrhythmia, monophasic action potential morphology, haemodynamics and myocardial substrate utilisation, AMP-activated protein kinase (AMPK) phosphorylation activity and ATP concentration.


Death due to VF occurred in 12% of pigs treated with metformin compared with 50% of untreated controls (p = 0.03). The anti-fibrillatory effect of metformin was associated with attenuation of action potential shortening in ischaemic myocardium (p = 0.02) and attenuation of the difference in action potential duration between ischaemic and non-ischaemic regions (p < 0.001) compared with untreated controls. Metformin had no effect on myocardial contractile function, oxygen consumption, or glucose or lactate utilisation. During ischaemia, however, metformin treatment amplified the activation of AMPK and preserved ATP concentration in myocardium compared with untreated controls (each p < 0.05).


Chronic treatment of metabolically normal pigs with metformin at a clinically relevant dose reduces mortality from ischaemic VF. This protection is associated with preservation of myocardial energetics during ischaemia. Maintenance of myocardial ATP concentration during ischaemia is likely to prevent action potential shortening, heterogeneity of repolarisation, and propensity for lethal arrhythmia. The findings suggest that metformin might be protective in non-diabetic individuals with coronary heart disease.


Action potential ATP Ischaemia Metformin Ventricular fibrillation 



AMP-activated protein kinase


Citrate synthase


ATP-sensitive potassium


Left anterior descending coronary artery


Left ventricle


Monophasic action potential


Ventricular fibrillation



The authors appreciate the contributions of M. Kusumah, surgical/anaesthesia assistant at the Denver VA Medical Center.

Data availability

All data generated or analysed during this study are included in this published article (and its ESM files).


GGS and RLS are supported by National Institutes of Health grants 5R01HL049944 and 4T32HL007171. GGS, JEBR and CRG are supported by the Medical Research Service of the US Department of Veterans Affairs. JEBR is supported by the University of Colorado Center for Women’s Health.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

All authors fulfilled ICMJE uniform requirements for manuscripts submitted to medical journals based upon substantial contributions to conception and design or acquisition and interpretation of data, drafting the article or critically revising it for intellectual content, and provision of approval of the submitted work. GGS is the guarantor of this work.

Supplementary material

125_2017_4287_MOESM1_ESM.pdf (21 kb)
ESM Table 1 (PDF 21.0 kb)


  1. 1.
    UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865CrossRefGoogle Scholar
  2. 2.
    Abualsuod A, Rutland JJ, Watts TE, Pandat S, Delongchamp R, Mehta JL (2015) The effect of metformin use on left ventricular ejection fraction and mortality post-myocardial infarction. Cardiovasc Drugs Ther 29:265–275CrossRefPubMedGoogle Scholar
  3. 3.
    Bannister CA, Holden SE, Jenkins-Jones S et al (2014) Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab 16:1165–1173CrossRefPubMedGoogle Scholar
  4. 4.
    Lamanna C, Monami M, Marchionni N, Mannucci E (2011) Effect of metformin on cardiovascular events and mortality: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 13:221–228CrossRefPubMedGoogle Scholar
  5. 5.
    Roussel R, Travert F, Pasquet B et al (2010) Metformin use and mortality among patients with diabetes and atherothrombosis. Arch Intern Med 170:1892–1899CrossRefPubMedGoogle Scholar
  6. 6.
    Rena G, Pearson ER, Sakamoto K (2013) Molecular mechanism of action of metformin: old or new insights? Diabetologia 56:1898–1906CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lexis CP, van der Horst IC, Lipsic E et al (2014) Effect of metformin on left ventricular function after acute myocardial infarction in patients without diabetes: the GIPS-III randomized clinical trial. JAMA 311:1526–1535CrossRefPubMedGoogle Scholar
  8. 8.
    Preiss D, Lloyd SM, Ford I et al (2014) Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabetes Endocrinol 2:116–124CrossRefPubMedGoogle Scholar
  9. 9.
    Gundewar S, Calvert JW, Jha S et al (2009) Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res 104:403–411CrossRefPubMedGoogle Scholar
  10. 10.
    Ashour AE, Sayed-Ahmed MM, Abd-Allah AR et al (2012) Metformin rescues the myocardium from doxorubicin-induced energy starvation and mitochondrial damage in rats. Oxidative Med Cell Longev 2012:434195CrossRefGoogle Scholar
  11. 11.
    Hale SL, Alker KJ, Lo HM, Ingwall JS, Kloner RA (1985) Alterations in the distribution of high-energy phosphates during ischemia in a canine model of reperfusion-induced ventricular fibrillation. Am Heart J 110:590–594CrossRefPubMedGoogle Scholar
  12. 12.
    Luqman N, Sung RJ, Wang CL, Kuo CT (2007) Myocardial ischemia and ventricular fibrillation: pathophysiology and clinical implications. Int J Cardiol 119:283–290CrossRefPubMedGoogle Scholar
  13. 13.
    Huang JV, Lu L, Ye S et al (2013) Impaired contractile recovery after low-flow myocardial ischemia in a porcine model of metabolic syndrome. Am J Physiol Heart Circ Physiol 304:H861–H873CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xu Y, Gen M, Lu L et al (2005) PPAR-gamma activation fails to provide myocardial protection in ischemia and reperfusion in pigs. Am J Physiol Heart Circ Physiol 288:H1314–H1323CrossRefPubMedGoogle Scholar
  15. 15.
    Lu L, Xu Y, Greyson CR, Ursell PC, Schwartz GG (1999) Non-elastic deformation of myocardium in low-flow ischemia and reperfusion: ultrastructure-function relations. J Mol Cell Cardiol 31:1157–1169CrossRefPubMedGoogle Scholar
  16. 16.
    Schwartz GG, Xu Y, Greyson C, Cohen J, Lu L (1996) Low-dose inotropic stimulation during left ventricular ischaemia does not worsen post-ischaemic dysfunction. Cardiovasc Res 32:1024–1037CrossRefPubMedGoogle Scholar
  17. 17.
    Franz MR, Flaherty JT, Platia EV, Bulkley BH, Weisfeldt ML (1984) Localization of regional myocardial ischemia by recording of monophasic action potentials. Circulation 69:593–604CrossRefPubMedGoogle Scholar
  18. 18.
    Lu L, Reiter MJ, Xu Y, Chicco A, Greyson CR, Schwartz GG (2008) Thiazolidinedione drugs block cardiac KATP channels and may increase propensity for ischaemic ventricular fibrillation in pigs. Diabetologia 51:675–685CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Greyson C, Garcia J, Mayr M, Schwartz GG (1995) Effects of inotropic stimulation on energy metabolism and systolic function of ischemic right ventricle. Am J Phys 268:H1821–H1828Google Scholar
  20. 20.
    Spinazzi M, Casarin A, Pertegato V, Ermani M, Salviati L, Angelini C (2011) Optimization of respiratory chain enzymatic assays in muscle for the diagnosis of mitochondrial disorders. Mitochondrion 11:893–904CrossRefPubMedGoogle Scholar
  21. 21.
    Keller AC, Knaub LA, Miller MW, Birdsey N, Klemm DJ, Reusch JE (2015) Saxagliptin restores vascular mitochondrial exercise response in the Goto-Kakizaki rat. J Cardiovasc Pharmacol 65:137–147PubMedPubMedCentralGoogle Scholar
  22. 22.
    Bethell HW, Vandenberg JI, Smith GA, Grace AA (1998) Changes in ventricular repolarization during acidosis and low-flow ischemia. Am J Phys 275:H551–H561Google Scholar
  23. 23.
    Nakaya H (2014) Role of ATP-sensitive K+ channels in cardiac arrhythmias. J Cardiovasc Pharmacol Ther 19:237–243CrossRefPubMedGoogle Scholar
  24. 24.
    Meng S, Cao J, He Q et al (2015) Metformin activates AMP-activated protein kinase by promoting formation of the alphabetagamma heterotrimeric complex. J Biol Chem 290:3793–3802CrossRefPubMedGoogle Scholar
  25. 25.
    Calvert JW, Gundewar S, Jha S et al (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57:696–705CrossRefPubMedGoogle Scholar
  26. 26.
    Dolinsky VW, Dyck JR (2006) Role of AMP-activated protein kinase in healthy and diseased hearts. Am J Physiol Heart Circ Physiol 291:H2557–H2569CrossRefPubMedGoogle Scholar
  27. 27.
    Omar MA, Fraser H, Clanachan AS (2008) Ischemia-induced activation of AMPK does not increase glucose uptake in glycogen-replete isolated working rat hearts. Am J Physiol Heart Circ Physiol 294:H1266–H1273CrossRefPubMedGoogle Scholar
  28. 28.
    Bairwa SC, Parajuli N, Dyck JR (2016) The role of AMPK in cardiomyocyte health and survival. Biochim Biophys Acta 1862:2199–2210CrossRefPubMedGoogle Scholar
  29. 29.
    Qi D, Young LH (2015) AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol Metab 26:422–429CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kawabata H, Ishikawa K (2003) Cardioprotection by metformin is abolished by a nitric oxide synthase inhibitor in ischemic rabbit hearts. Hypertens Res 26:107–110CrossRefPubMedGoogle Scholar
  31. 31.
    Kim AS, Miller EJ, Wright TM et al (2011) A small molecule AMPK activator protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 51:24–32CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cahova M, Palenickova E, Dankova H et al (2015) Metformin prevents ischemia reperfusion-induced oxidative stress in the fatty liver by attenuation of reactive oxygen species formation. Am J Physiol Gastrointest Liver Physiol 309:G100–G111CrossRefPubMedGoogle Scholar
  33. 33.
    Williamson JR, Ford C, Illingworth J, Safer B (1976) Coordination of citric acid cycle activity with electron transport flux. Circ Res 38:I39–I51PubMedGoogle Scholar
  34. 34.
    Barreto-Torres G, Parodi-Rullan R, Javadov S (2012) The role of PPARalpha in metformin-induced attenuation of mitochondrial dysfunction in acute cardiac ischemia/reperfusion in rats. Int J Mol Sci 13:7694–7709CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Saito T, Sato T, Miki T, Seino S, Nakaya H (2005) Role of ATP-sensitive K+ channels in electrophysiological alterations during myocardial ischemia: a study using Kir 6.2-null mice. Am J Physiol heart Circ Physiol 288:H352–H357CrossRefPubMedGoogle Scholar
  36. 36.
    Farid TA, Nair K, Masse S et al (2011) Role of KATP channels in the maintenance of ventricular fibrillation in cardiomyopathic human hearts. Circ Res 109:1309–1318CrossRefPubMedGoogle Scholar
  37. 37.
    Picard S, Rouet R, Ducouret P et al (1999) KATP channels and 'border zone' arrhythmias: role of the repolarization dispersion between normal and ischaemic ventricular regions. Br J Pharmacol 127:1687–1695CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Aziz Q, Thomas A, Khambra T, Tinker A (2010) Phenformin has a direct inhibitory effect on the ATP-sensitive potassium channel. Eur J Pharmacol 634:26–32CrossRefPubMedGoogle Scholar
  39. 39.
    Vytla VS, Ochs RS (2013) Metformin increases mitochondrial energy formation in L6 muscle cell cultures. J Biol Chem 288:20369–20377CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94CrossRefPubMedGoogle Scholar
  41. 41.
    VA Office of Research and Development (2016) Investigation of metformin in pre-diabetes on atherosclerotic cardiovascular outcomes (VA-IMPACT). Available from www.clinicaltrials.gov. Accessed 20 Feb 2017
  42. 42.
    Cambridge University Hospitals, NHS Foundation Trust, and the University of Cambridge (2014) Glucose lowering in non-diabetic hyperglycaemia trial (GLINT). Available from www.clinicaltrialsregister.eu. Accessed 20 Feb 2017

Copyright information

© Springer-Verlag (outside the USA) 2017

Authors and Affiliations

  • Li Lu
    • 1
    • 2
  • Shuyu Ye
    • 1
    • 2
  • Rebecca L. Scalzo
    • 2
    • 3
  • Jane E. B. Reusch
    • 2
    • 3
  • Clifford R. Greyson
    • 1
    • 2
  • Gregory G. Schwartz
    • 1
    • 2
  1. 1.Cardiology SectionDenver VA Medical CenterDenverUSA
  2. 2.University of Colorado School of MedicineAuroraUSA
  3. 3.Endocrinology/Metabolism SectionDenver VA Medical CenterDenverUSA

Personalised recommendations