, Volume 60, Issue 7, pp 1344–1353 | Cite as

Women with prior gestational diabetes mellitus and prediabetes are characterised by a decreased incretin effect

  • Signe Foghsgaard
  • Louise Vedtofte
  • Camilla Andreasen
  • Emilie S. Andersen
  • Emilie Bahne
  • Jonatan I. Bagger
  • Jens A. Svare
  • Jens J. Holst
  • Tine D. Clausen
  • Elisabeth R. Mathiesen
  • Peter Damm
  • Filip K. Knop
  • Tina Vilsbøll



We investigated whether a reduced incretin effect, as observed in patients with type 2 diabetes, can be detected in high-risk individuals, such as women with prior gestational diabetes mellitus (pGDM).


In this cross-sectional study, 102 women without diabetes with pGDM and 15 control participants without pGDM and with normal glucose tolerance (NGT) underwent a 4 h 75 g OGTT and an isoglycaemic i.v. glucose infusion (IIGI). Women with pGDM were classified as having NGT or prediabetes (impaired fasting glucose and/or impaired glucose tolerance). Insulin sensitivity was assessed using the Matsuda index and HOMA2-IR and the incretin effect was calculated from insulin responses during the study (100% × [AUCinsulin,OGTT − AUCinsulin,IIGI]/AUCinsulin,OGTT).


Sixty-three of the 102 women with pGDM (62%) had prediabetes (median [interquartile range]: age, 38.3 [6.5] years; BMI, 32.1 [5.8] kg/m2) and 39 women (38%) had NGT (age, 39.5 [5.6] years; BMI, 31.0 [6.7] kg/m2). Control participants (n = 15) were not significantly different from the pGDM group with regards to age (39.2 [7.4] years) and BMI (28.8 [9.2] kg/m2). Compared with women with NGT and control participants, women with prediabetes had lower insulin sensitivity, as measured by the Matsuda index (3.0 [2.4] vs 5.0 [2.6] vs 1.5 [1.8], respectively; p < 0.001). The incretin effect was 55.3% [27.8], 73.8% [19.0] and 76.7% [24.6] in women with prediabetes, women with normal glucose tolerance and control participants, respectively (p < 0.01).


Prediabetes was highly prevalent in women with pGDM, and alterations in the incretin effect were detected in this group before the development of type 2 diabetes.

Trial registration:

clinicaltrialsregister.eu 2012-001371-37-DK.


Gestational diabetes mellitus Impaired glucose tolerance Incretin effect Isoglycaemic i.v. glucose infusion Oral glucose tolerance test Prediabetes Type 2 diabetes 



Fasting plasma glucose


Good clinical practice


Gestational diabetes mellitus


Gastrointestinal-mediated glucose disposal


Glucose-dependent insulinotropic polypeptide


Glucagon-like peptide-1


Incremental AUC


Impaired fasting glucose


Impaired glucose tolerance


Isoglycaemic i.v. glucose infusion


Interquartile range


Insulin secretory rate


Normal glucose tolerance


Prior gestational diabetes mellitus


Total AUC


  1. 1.
    World Health Organization, International Diabetes Federation (2006) Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. WHO, GenevaGoogle Scholar
  2. 2.
    Lauenborg J, Hansen T, Jensen DM et al (2004) Increasing incidence of diabetes after gestational diabetes: a long-term follow-up in a Danish population. Diabetes Care 27:1194–1199CrossRefPubMedGoogle Scholar
  3. 3.
    Kitzmiller JL, Dang-Kilduff L, Taslimi MM (2007) Gestational diabetes after delivery. Short-term management and long-term risks. Diabetes Care 30(Suppl 2):S225–S235CrossRefPubMedGoogle Scholar
  4. 4.
    Benhalima K, Mathieu C, Damm P et al (2015) A proposal for the use of uniform diagnostic criteria for gestational diabetes in Europe: an opinion paper by the European Board & College of Obstetrics and Gynaecology (EBCOG). Diabetologia 58:1422–1429CrossRefPubMedGoogle Scholar
  5. 5.
    Kim C, Newton KM, Knopp RH (2002) Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care 25:1862–1868CrossRefPubMedGoogle Scholar
  6. 6.
    Fernández-Castañer M, Biarnés J, Camps I, Ripollés J, Gómez N, Soler J (1996) Beta-cell dysfunction in first-degree relatives of patients with non-insulin-dependent diabetes mellitus. Diabet Med J 13:953–959CrossRefGoogle Scholar
  7. 7.
    Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383:1068–1083CrossRefPubMedGoogle Scholar
  8. 8.
    Nauck M, Stöckmann F, Ebert R, Creutzfeldt W (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29:46–52CrossRefPubMedGoogle Scholar
  9. 9.
    Vilsbøll T, Krarup T, Madsbad S, Holst JJ (2002) Defective amplification of the late phase insulin response to glucose by GIP in obese type II diabetic patients. Diabetologia 45:1111–1119CrossRefPubMedGoogle Scholar
  10. 10.
    Kosinski M, Knop FK, Vedtofte L et al (2013) Postpartum reversibility of impaired incretin effect in gestational diabetes mellitus. Regul Pept 186:104–107CrossRefPubMedGoogle Scholar
  11. 11.
    Foghsgaard S, Vedtofte L, Mathiesen ER et al (2013) The effect of a glucagon-like peptide-1 receptor agonist on glucose tolerance in women with previous gestational diabetes mellitus: protocol for an investigator-initiated, randomised, placebo-controlled, double-blinded, parallel intervention trial. BMJ Open 3:e003834. doi:10.1136/bmjopen-2013-003834 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wewer Albrechtsen NJ, Hartmann B, Veedfald S et al (2014) Hyperglucagonaemia analysed by glucagon sandwich ELISA: non-specific interference or truly elevated levels? Diabetologia 57:1919–1926CrossRefPubMedGoogle Scholar
  13. 13.
    Lindgren O, Carr RD, Deacon CF et al (2011) Incretin hormone and insulin responses to oral versus intravenous lipid administration in humans. J Clin Endocrinol Metab 96:2519–2524CrossRefPubMedGoogle Scholar
  14. 14.
    Orskov C, Wettergren A, Holst JJ (1993) Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes 42:658–661CrossRefPubMedGoogle Scholar
  15. 15.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419CrossRefPubMedGoogle Scholar
  16. 16.
    Levy JC, Matthews DR, Hermans MP (1998) Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21:2191–2192CrossRefPubMedGoogle Scholar
  17. 17.
    Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470CrossRefPubMedGoogle Scholar
  18. 18.
    Turner RC, Holman RR, Matthews D, Hockaday TD, Peto J (1979) Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism 28:1086–1096CrossRefPubMedGoogle Scholar
  19. 19.
    Hare KJ, Vilsbøll T, Holst JJ, Knop FK (2010) Inappropriate glucagon response after oral compared with isoglycemic intravenous glucose administration in patients with type 1 diabetes. Am J Physiol Endocrinol Metab 298:E832–E837CrossRefPubMedGoogle Scholar
  20. 20.
    Orskov C, Rabenhøj L, Wettergren A, Kofod H, Holst JJ (1994) Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes 43:535–539CrossRefPubMedGoogle Scholar
  21. 21.
    Michaliszyn SF, Mari A, Lee S et al (2014) β-Cell function, incretin effect, and incretin hormones in obese youth along the span of glucose tolerance from normal to prediabetes to type 2 diabetes. Diabetes 63:3846–3855CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Knop FK, Aaboe K, Vilsbøll T et al (2012) Impaired incretin effect and fasting hyperglucagonaemia characterizing type 2 diabetic subjects are early signs of dysmetabolism in obesity. Diabetes Obes Metab 14:500–510CrossRefPubMedGoogle Scholar
  23. 23.
    Holst JJ, Knop FK, Vilsbøll T, Krarup T, Madsbad S (2011) Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care 34(Suppl 2):S251–S257CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bagger JI, Knop FK, Lund A, Holst JJ, Vilsbøll T (2014) Glucagon responses to increasing oral loads of glucose and corresponding isoglycaemic intravenous glucose infusions in patients with type 2 diabetes and healthy individuals. Diabetologia 57:1720–1725CrossRefPubMedGoogle Scholar
  25. 25.
    Færch K, Torekov SS, Vistisen D et al (2015) GLP-1 response to oral glucose is reduced in prediabetes, screen-detected type 2 diabetes, and obesity and influenced by sex: the ADDITION-PRO study. Diabetes 64:2513–2525CrossRefPubMedGoogle Scholar
  26. 26.
    Mitrakou A, Kelley D, Mokan M et al (1992) Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med 326:22–29CrossRefPubMedGoogle Scholar
  27. 27.
    Laakso M, Zilinskaite J, Hansen T et al (2008) Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study. Diabetologia 51:502–511CrossRefPubMedGoogle Scholar
  28. 28.
    Forbes S, Godsland IF, Taylor-Robinson SD et al (2013) A history of previous gestational diabetes mellitus is associated with adverse changes in insulin secretion and VLDL metabolism independently of increased intrahepatocellular lipid. Diabetologia 56:2021–2033CrossRefPubMedGoogle Scholar
  29. 29.
    Meier JJ, Gallwitz B, Askenas M et al (2005) Secretion of incretin hormones and the insulinotropic effect of gastric inhibitory polypeptide in women with a history of gestational diabetes. Diabetologia 48:1872–1881CrossRefPubMedGoogle Scholar
  30. 30.
    Calanna S, Christensen M, Holst JJ et al (2013) Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia 56:965–972CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    American Diabetes Association (2016) II. Classification and diagnosis of diabetes. Diabetes Care 39(Suppl 2):S137–S145Google Scholar
  32. 32.
    Metzger BE, Coustan DR (1998) Summary and recommendations of the Fourth International Workshop-Conference on Gestational Diabetes Mellitus. The Organizing Committee. Diabetes Care 21(Suppl 2):B161–B167PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Signe Foghsgaard
    • 1
    • 2
    • 3
  • Louise Vedtofte
    • 1
  • Camilla Andreasen
    • 1
  • Emilie S. Andersen
    • 1
  • Emilie Bahne
    • 1
  • Jonatan I. Bagger
    • 1
  • Jens A. Svare
    • 4
  • Jens J. Holst
    • 2
  • Tine D. Clausen
    • 5
  • Elisabeth R. Mathiesen
    • 6
  • Peter Damm
    • 7
  • Filip K. Knop
    • 1
    • 2
    • 8
  • Tina Vilsbøll
    • 1
    • 8
  1. 1.Center for Diabetes ResearchGentofte Hospital, University of CopenhagenHellerupDenmark
  2. 2.NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
  3. 3.Danish Diabetes AcademyOdense University HospitalOdenseDenmark
  4. 4.Department of Gynecology and ObstetricsHerlev HospitalHerlevDenmark
  5. 5.Department of Gynecology and ObstetricsNordsjællands HospitalHillerødDenmark
  6. 6.Center for Pregnant Women with Diabetes, Department of EndocrinologyRigshospitaletCopenhagenDenmark
  7. 7.Center for Pregnant Women with Diabetes, Department of ObstetricsRigshospitaletCopenhagenDenmark
  8. 8.Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations