In this large, contemporary, multiethnic cohort study, the presence of an increasing number of ICH components at baseline was strongly and inversely associated with incident diabetes. The effect of ICH was graded: participants with intermediate or ideal vs poor cardiovascular health had a 34% and 75% lower diabetes incidence, respectively, which is consistent with previous studies [12, 13]. In analyses stratified by race/ethnicity, the greatest reductions in diabetes risk based on ICH components were seen in NHW and CA. Overall, three out of five cases of diabetes in this middle-aged population appeared attributable to not having ICH at baseline. If these associations are causal, diabetes could be prevented by attainment of at least four ICH components. Compared with previous studies examining the combined effects of multiple risk factors on the incidence of diabetes [12, 13], we used a novel AHA concept that may be more adapted for translation of prevention policies that encompass both diabetes and CVD into practice. Public health interventions over the last 30 years have led to plateauing of diabetes incidence among NHW, but among AA and HA there remains a continued ascent in incident diabetes [14]. Overall, these findings support promotion of and adherence to the AHA 2020 impact goals to lower diabetes incidence among all races/ethnicities, but emphasise the importance of tailoring interventions to prevent diabetes in racial/ethnic minorities given the observed disparities.
ICH goals and incident diabetes
Our study is the first multiethnic analysis to assess the association of baseline ICH with incident diabetes. A previous study among American Indians showed that participants who achieved 0–1 ICH goals compared with those who achieved 2–3 or ≥4 ICH goals had a 60% and 89% lower odds of developing diabetes [6], compared with the 34% (2–3 ICH goals) and 75% (≥4 ICH goals) lower diabetes incidence compared with 0–1 ICH goals in our study. The observed difference is likely related to the inclusion of glucose among the ICH components in the Fretts et al study [6], whereas we excluded glucose in our main analysis, as it is directly in the causal pathway to diabetes. However, sensitivity analyses including glucose as a component of cardiovascular health revealed a similar order of risk reduction: −61% and −86% lower diabetes risk of participants in the intermediate or ideal category compared with those in the poor category. In the Cardiovascular Health Study [12], among older US adults (age >65 years) low-risk lifestyle groups defined by physical activity, dietary score, smoking, alcohol use, BMI and waist circumference were associated with an 89% reduction in diabetes risk with five low-risk lifestyle factors, similar to our 89% reduction in risk with ≥4 ICH components. In the National Institutes of Health–American Association of Retired Persons (NIH-AARP) Diet and Health Study, Reis et al [13] examined the association of low-risk lifestyle factors including BMI, diet, smoking, moderate alcohol consumption and regular physical activity with incident diabetes (self-report). The ORs for incident diabetes over 11 years in those with all five low-risk lifestyle factors at baseline were 0.28 (95% CI 0.23, 0.34) and 0.16 (95% CI 0.10, 0.24) for men and women, respectively, suggesting sex differences. These findings were similar to our ICH category (≥4 ICH components), and the test for effect modification by sex in our analysis was non-significant. We extended these previous findings by assessing a multiethnic population, as the Cardiovascular Health Study is 88.6% NHW and the NIH-AARP Diet and Health Study is 94.3% NHW, thus limiting generalisability of the finding to other racial/ethnic groups.
Racial/ethnic differences
Consistent with previous US population-based studies [15], AA and HA in the MESA cohort had lower levels of ICH at baseline. We observed significant variation of the association of higher ICH with lower incident diabetes among racial/ethnic groups. NHW and CA had greater magnitudes of risk reduction and better cardiovascular health compared with AA and HA (p < 0.01). The lower prevalence of ICH [15], combined with lower magnitude of diabetes reduction with ICH in AA and HA, provide a potential explanation and intervention target for the disparities in diabetes prevalence among these groups.
Individual AHA cardiovascular health goals and incident diabetes
Impaired glucose tolerance, impaired fasting glucose and HbA1c in the prediabetic range (5.7–6.4% [38.8–46.4 mmol/mol]) are associated with the greatest risk of diabetes, as they reflect derangements in the pathway from normal glucose tolerance to diabetes [16, 17]. Among risk factors not directly in the causal pathway, BMI was the predominant risk factor for diabetes, with a 48% and 77% lower diabetes risk for overweight BMI and normal BMI, respectively, vs obese BMI. This is consistent with previous studies showing increasing BMI as the primary risk factor increasing diabetes prevalence in the USA over the last 30 years [18]. In the Diabetes Prevention Program (DPP), sustained weight loss was the primary driver of reduced diabetes risk and cardiometabolic improvement [19]. In US populations, the imbalance between caloric intake and energy expenditure is the primary driver of increasing BMI and may have even greater importance in some racial/ethnic groups due to a reduction in baseline energy expenditure [20].
Among the other individual components, normal BP (<120/<80 mmHg) was associated with a 47% diabetic risk reduction in the overall cohort vs elevated BP (>140/90 mmHg), with NHW showing the greatest reduction in diabetes risk compared with the other racial/ethnic groups. In a prior study, BP elevation was associated with incident diabetes in AA and NHW in age-adjusted analyses, but the association was non-significant among AA after adjustment for other diabetic risk factors [21]. This corresponded with an earlier study in which mean BP was significantly correlated with fasting plasma insulin and rate of glucose disposal in whites, but not in blacks [22]. Contrary to the prior literature, in our study, BP remained significant in all racial/ethnic groups except for HA. Elevated BP and diabetes can both be mediated by inflammation and decreased antioxidants, which may partly explain the association between BP and diabetes [23].
Physical activity is beneficial in reducing incident diabetes in the majority of NHW observational studies [24]. There is a scarcity of data on physical activity alone and incident diabetes in racial/ethnic minority groups in the USA. In observational studies, AA and HA have lower physical activity levels than NHW, independently of social class [25]. In a study of AA women, vigorous physical activity alone was associated with a dose-dependent reduction in risk of incident diabetes [26]. Further studies to understand the impact of physical activity on diabetes risk are warranted in US racial/ethnic minority groups.
Smoking, dietary intake and total cholesterol were not individually associated with incident diabetes in our analysis. In large multiethnic meta-analyses, smoking increased the risk of diabetes, with a pooled adjusted relative risk of 1.4 (95% CI 1.3, 1.6) vs non-smokers [27]. Data on causal inference between smoking and the development of diabetes are inconsistent: some studies show impairment in insulin sensitivity [28, 29] and glucose tolerance [29, 30], while other studies conclude that causal inference is not likely, after adjusting for confounders including age and BMI [31]. Further complicating the relationship are data from smoking cessation studies showing worsened glucose metabolism in those with diabetes in the first 1–3 years after smoking cessation [32], and an increased risk of incident diabetes in smokers without diabetes who quit, with subsequent improvement to similar risk of that of non-smokers over 12 years [33]. Smokers are also more likely to have unhealthy behaviours and low socioeconomic status, which contribute to the risk of diabetes [27].
While there was no association of dietary intake with incident diabetes, we are unable to draw definitive conclusions because only 1.5% of participants had baseline ideal dietary intake. Components of the AHA diet score including fruits and vegetables, fibre-rich whole grains, decreased sodium and sugar-sweetened beverage intake, and adherence to components of the Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean diet have been associated with improvements in glucose metabolism and decreased incident diabetes [34–38]. A meta-analysis of ten large prospective studies found that dietary patterns similar to the AHA dietary recommendations were associated with a 66% reduction in diabetes [39]. Notably, the AHA diet score does not take into account other forms of dietary intake associated with decreases in diabetes and CVD risk including dairy consumption [40–42] and glycaemic index/load [43–45].
We found no significant overall association between total cholesterol and incident diabetes in our analysis. Components of the lipid profile including triacylglycerols, HDL and non-esterified fatty acids, have been associated with incident diabetes [46].
Among the AHA cardiovascular health components, BMI is well studied in US racial/ethnic minorities, in whom weight loss has been shown to reduce diabetes risk [19]. The association of individual components including BP, physical activity, smoking, total cholesterol and dietary intake with diabetes has previously revealed inconsistent findings and would benefit from further study among US racial/ethnic minorities.
Strengths and limitations
Strengths of our analysis include a moderately large, socioeconomically diverse, multiethnic US population with over a decade of follow-up, allowing broad generalisability of our findings. We used validated questionnaires and documentation of diabetes over time with fasting glucose, medication use and self-reported physician diagnosis. Nevertheless, there are several potential limitations. Physical activity and diet were self-reported; thus, misclassification and residual confounding by these variables may have occurred. The time frame queried was the last month prior to the baseline visit; so, depending on the season of examination, the prior month may not be representative of customary physical activity and dietary intake. Sample sizes varied for the racial/ethnic groups, with power implications for detecting significant racial/ethnic interactions in stratified analyses, but the interaction terms for categories of cardiovascular health were significant (p < 0.01). As previously mentioned, we were unable to distinguish between type 1 diabetes and type 2 diabetes, so we assumed a predominance of type 2 incident diabetes in our population.
Conclusions
Our study showed that increasing levels of ideal and overall cardiovascular health within the guidelines set forth by the AHA 2020 impact goals may reduce the burden of diabetes in the USA. Unfortunately, less than one in four participants in our overall cohort and less than one in six racial/ethnic minorities attained ≥4 ICH components, which is similar to findings in other studies [4, 5, 15]. Given the racial/ethnic differences in attainment of ICH, the lower magnitude of risk reduction with ICH and the increased burden of diabetes in racial/ethnic minorities, further research on promotion, attainment and ethnic differences of ICH in US racial/ethnic minority groups is of paramount importance to lower the risk of CVD and diabetes.