Abstract
Aims/hypothesis
Enterovirus infections have been implicated in the aetiology of autoimmune type 1 diabetes. A vaccine could be used to test the causal relationship between enterovirus infections and diabetes development. However, the development of a vaccine against a virus suspected to induce an autoimmune disease is challenging, since the vaccine itself might trigger autoimmunity. Another challenge is to select the enterovirus serotypes to target with a vaccine. Here we aimed to evaluate the function and autoimmune safety of a novel non-adjuvanted prototype vaccine to Coxsackievirus serotype B1 (CVB1), a member of the enterovirus genus.
Methods
A formalin-inactivated CVB1 vaccine was developed and tested for its immunogenicity and safety in BALB/c and NOD mice. Prediabetic NOD mice were vaccinated, infected with CVB1 or mock-treated to compare the effect on diabetes development.
Results
Vaccinated mice produced high titres of CVB1-neutralising antibodies without signs of vaccine-related side effects. Vaccinated mice challenged with CVB1 had significantly reduced levels of replicating virus in their blood and the pancreas. Prediabetic NOD mice demonstrated an accelerated onset of diabetes upon CVB1 infection whereas no accelerated disease manifestation or increased production of insulin autoantibodies was observed in vaccinated mice.
Conclusions/interpretation
We conclude that the prototype vaccine is safe and confers protection from infection without accelerating diabetes development in mice. These results encourage the development of a multivalent enterovirus vaccine for human use, which could be used to determine whether enterovirus infections trigger beta cell autoimmunity and type 1 diabetes in humans.
Similar content being viewed by others
Abbreviations
- CCID50 :
-
50% cell-culture infectious dose
- CVB:
-
Coxsackievirus serotype B
- EV:
-
Enterovirus
- IAA:
-
Insulin autoantibodies
- IHC:
-
Immunohistochemistry
- ISH:
-
In situ hybridisation
- p.i.:
-
Post infection
References
Gale EA (2002) The rise of childhood type 1 diabetes in the 20th century. Diabetes 51:3353–3361
The DIAMOND Project Group (2006) Incidence and trends of childhood type 1 diabetes worldwide 1990-1999. Diabet Med 23:857–866
Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study. Lancet 373:2027–2033
Gamble DR, Kinsley ML, FitzGerald MG, Bolton R, Taylor KW (1969) Viral antibodies in diabetes mellitus. Br Med J 3:627–630
Hyoty H, Hiltunen M, Knip M et al (1995) A prospective study of the role of Coxsackie B and other enterovirus infections in the pathogenesis of IDDM. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes 44:652–657
Lonnrot M, Korpela K, Knip M et al (2000) Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study. Diabetes 49:1314–1318
Sarmiento L, Galvan JA, Cabrera-Rode E et al (2012) Type 1 diabetes associated and tissue transglutaminase autoantibodies in patients without type 1 diabetes and coeliac disease with confirmed viral infections. J Med Virol 84:1049–1053
Laitinen OH, Honkanen H, Pakkanen O et al (2014) Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes 63:446–455
Stene LC, Oikarinen S, Hyoty H et al (2010) Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the Diabetes and Autoimmunity Study in the Young (DAISY). Diabetes 59:3174–3180
Ylipaasto P, Klingel K, Lindberg AM et al (2004) Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 47:225–239
Dotta F, Censini S, van Halteren AG et al (2007) Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A 104:5115–5120
Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG (2009) The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 52:1143–1151
Krogvold L, Edwin B, Buanes T et al (2014) Low-grade enterovirus infection in the pancreatic islets of Langerhans in newly diagnosed type 1 diabetes patients. Pediatr Diabetes 15:29 (O27)
Hultcrantz M, Huhn MH, Wolf M et al (2007) Interferons induce an antiviral state in human pancreatic islet cells. Virology 367:92–101
Lind K, Richardson SJ, Leete P, Morgan NG, Korsgren O, Flodstrom-Tullberg M (2013) Induction of an antiviral state and attenuated coxsackievirus replication in type III interferon-treated primary human pancreatic islets. J Virol 87:7646–7654
Hober D, Sauter P (2010) Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Rev Endocrinol 6:279–289
Yeung WC, Rawlinson WD, Craig ME (2011) Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342:d35
Ghazarian L, Diana J, Simoni Y, Beaudoin L, Lehuen A (2013) Prevention or acceleration of type 1 diabetes by viruses. Cell Mol Life Sci CMLS 70:239–255
Spagnuolo I, Patti A, Sebastiani G, Nigi L, Dotta F (2013) The case for virus-induced type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 20:292–298
Hyoty H, Knip M (2014) Developing a vaccine for type 1 diabetes through targeting enteroviral infections. Expert Rev Vaccines 13:989–999
Gamble DR, Taylor KW, Cumming H (1973) Coxsackie viruses and diabetes mellitus. Br Med J 4:260–262
Coleman TJ, Gamble DR, Taylor KW (1973) Diabetes in mice after Coxsackie B4 virus infection. Br Med J 3:25–27
Yoon JW, Austin M, Onodera T, Notkins AL (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300:1173–1179
Vreugdenhil GR, Schloot NC, Hoorens A et al (2000) Acute onset of type I diabetes mellitus after severe echovirus 9 infection: putative pathogenic pathways. Clin Infect Dis Off Publ Infect Dis Soc Am 31:1025–1031
Oikarinen S, Tauriainen S, Hober D et al (2014) Virus antibody survey in different European populations indicates risk association between coxsackievirus B1 and type 1 diabetes. Diabetes 63:655–662
Mahlios J, de la Herran-Arita AK, Mignot E (2013) The autoimmune basis of narcolepsy. Curr Opin Neurobiol 23:767–773
Partinen M, Kornum BR, Plazzi G, Jennum P, Julkunen I, Vaarala O (2014) Narcolepsy as an autoimmune disease: the role of H1N1 infection and vaccination. Lancet Neurol 13:600–613
Furesz J (2006) Developments in the production and quality control of poliovirus vaccines—historical perspectives. Biologicals J Int Assoc Biol Stand 34:87–90
Nix WA, Oberste MS, Pallansch MA (2006) Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. J Clin Microbiol 44:2698–2704
Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
Larsson PG, Lakshmikanth T, Svedin E, King C, Flodström-Tullberg M (2013) Previous maternal infection protects offspring from enterovirus infection and prevents experimental diabetes development in mice. Diabetologia 56:867–874
Knip M, Virtanen SM, Seppa K et al (2010) Dietary intervention in infancy and later signs of beta-cell autoimmunity. N Engl J Med 363:1900–1908
Flodstrom-Tullberg M, Hultcrantz M, Stotland A et al (2005) RNase L and double-stranded RNA-dependent protein kinase exert complementary roles in islet cell defense during coxsackievirus infection. J Immunol 174:1171–1177
Oikarinen M, Tauriainen S, Oikarinen S et al (2012) Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes 61:687–691
Flodstrom M, Tsai D, Fine C, Maday A, Sarvetnick N (2003) Diabetogenic potential of human pathogens uncovered in experimentally permissive beta-cells. Diabetes 52:2025–2034
Mena I, Fischer C, Gebhard JR, Perry CM, Harkins S, Whitton JL (2000) Coxsackievirus infection of the pancreas: evaluation of receptor expression, pathogenesis, and immunopathology. Virology 271:276–288
Flodstrom M, Horwitz MS, Maday A, Balakrishna D, Rodriguez E, Sarvetnick N (2001) A critical role for inducible nitric oxide synthase in host survival following coxsackievirus B4 infection. Virology 281:205–215
Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485
Ziegler AG, Rewers M, Simell O et al (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309:2473–2479
Zhang L, Nakayama M, Eisenbarth GS (2008) Insulin as an autoantigen in NOD/human diabetes. Curr Opin Immunol 20:111–118
Serreze DV, Ottendorfer EW, Ellis TM, Gauntt CJ, Atkinson MA (2000) Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T cells in pancreatic islets. Diabetes 49:708–711
Drescher KM, Kono K, Bopegamage S, Carson SD, Tracy S (2004) Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 329:381–394
Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N (1998) Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 4:781–785
Yu L, Robles DT, Abiru N et al (2000) Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci U S A 97:1701–1706
Kado S, Miyamoto J, Komatsu N et al (2000) Type 1 diabetes mellitus caused by treatment with interferon-beta. Intern Med 39:146–149
Alba A, Puertas MC, Carrillo J et al (2004) IFN beta accelerates autoimmune type 1 diabetes in nonobese diabetic mice and breaks the tolerance to beta cells in nondiabetes-prone mice. J Immunol 173:6667–6675
Kallionpaa H, Elo LL, Laajala E et al (2014) Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility. Diabetes 63:2402–2414
Ferreira RC, Guo H, Coulson RM et al (2014) A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 63:2538–2550
Davydova B, Harkonen T, Kaialainen S, Hovi T, Vaarala O, Roivainen M (2003) Coxsackievirus immunization delays onset of diabetes in non-obese diabetic mice. J Med Virol 69:510–520
Larsson PG (2014) Interactions between enteroviruses and the host—implications for type 1 diabetes. Doctoral thesis in Medical Science, The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
Acknowledgements
The authors acknowledge J. Laiho and S. Oikarinen (Department of Virology, University of Tampere, Finland), V. Stone (Center for Infectious Medicine, Karolinska Institutet, Sweden) and R. Kuiper (Unit for Morphological Phenotype Analysis, Karolinska Institutet, Sweden) for excellent technical assistance.
Parts of this study were presented at the 2013 Keystone Symposia in Immunopathology of Type 1 Diabetes (poster), the 13th International Congress of the Immunology of Diabetes Society meeting (oral and poster), the 2014 International Picornavirus (Europic) meeting (oral) and in a doctoral thesis by P. G. Larsson in 2014 [50].
Funding
This study was co-funded from academic and industrial sources. The study was supported by the Karolinska Institutet Strategic Research Programme in Diabetes (SPR), the Swedish Child Diabetes Foundation, the Swedish Diabetes Association Research Foundation, the Finnish Funding Agency for Technology and Innovation, the Academy of Finland and the European Commission PEVNET (FP-7 Programme, contract No. 261441). In addition, the study was partly funded by Sanofi Pasteur and Vactech Ltd. MF-T is supported by Karolinska Institutet, Stockholm, Sweden and a VINNMER fellowship from VINNOVA, Sweden.
Duality of interest
HH and MK are minor shareholders (<5%) and members of the board of Vactech Oy, which develops vaccines against picornaviruses. All other authors declare no duality of interest associated with this manuscript.
Contribution statement
PGL performed experiments, researched the data, analysed the data and results and wrote the manuscript. TL performed experiments, researched the data and reviewed the manuscript. OHL designed the study, researched and analysed the data and reviewed the manuscript. RU, SJ, MO, ED, MRLK, PC and ND performed experiments, researched the data and reviewed the manuscript. VL, JA, MK and HH designed the study and reviewed the manuscript. MF-T designed the study and wrote the manuscript. All authors gave their approval for publishing the final version of the manuscript. PGL and MF-T are the guarantors of this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
P. G. Larsson and T. Lakshmikanth contributed equally to this study.
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM Fig. 1
(PDF 726 kb)
Rights and permissions
About this article
Cite this article
Larsson, P.G., Lakshmikanth, T., Laitinen, O.H. et al. A preclinical study on the efficacy and safety of a new vaccine against Coxsackievirus B1 reveals no risk for accelerated diabetes development in mouse models. Diabetologia 58, 346–354 (2015). https://doi.org/10.1007/s00125-014-3436-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00125-014-3436-0