Skip to main content

Advertisement

Log in

Mind the gap: connexins and cell–cell communication in the diabetic kidney

  • Review
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Connexins, assembled as a hexameric connexon, form a transmembrane hemichannel that provides a conduit for paracrine signalling of small molecules and ions to regulate the activity and function of adjacent cells. When hemichannels align and associate with similar channels on opposing cells, they form a continuous aqueous pore or gap junction, allowing the direct transmission of metabolic and electrical signals between coupled cells. Regulation of gap junction synthesis and channel activity is critical for cell function, and a number of diseases can be attributed to changes in the expression/function of these important proteins. Diabetic nephropathy is associated with several complex metabolic and inflammatory responses characterised by defects at the molecular, cellular and tissue level. In both type 1 and type 2 diabetes, glycaemic injury of the kidney is the leading cause of end-stage renal failure, a consequence of multiple aetiologies, including increased deposition of extracellular matrix, glomerular hyperfiltration, albuminuria and tubulointerstitial fibrosis. In diabetic nephropathy, loss of connexin mediated cell–cell communication within the nephron may represent an early sign of disease; however, our current knowledge of the role of connexins in the diabetic kidney is sparse. This review highlights recent evidence demonstrating that maintenance of connexin-mediated cell–cell communication could benefit region-specific renal function in diabetic nephropathy and suggests that these proteins should be viewed as a tantalising novel target for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

α-Sma:

α-Smooth muscle actin

CX:

Connexin

E-cadherin:

Epithelial cadherin

ECM:

Extracellular matrix

EMT:

Epithelial-to-mesenchymal transition

ESRD:

End-stage renal disease

GJIC:

Gap junction intercellular communication

N-cadherin:

Neural cadherin

STZ:

Streptozotocin

ZDF:

Zucker Diabetic Fatty

ZL:

Zucker Lean

ZO-1:

Zonula occludens 1

References

  1. Bosco D, Haefliger JA, Meda P (2011) Connexins: key mediators of endocrine function. Physiol Rev 91:1393–1445

    Article  CAS  PubMed  Google Scholar 

  2. Hanner F, Sorensen CM, Holstein-Rathlou NH, Peti-Peterdi J (2010) Connexins and the kidney. Am J Physiol Regul Integr Comp Physiol 298:R1143–R1155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Oppermann M, Carota I, Schiessl I, Eisner C, Castrop H, Schnermann J (2013) Direct assessment of tubuloglomerular feedback responsiveness in connexin 40-deficient mice. Am J Physiol Ren Physiol 304:F1181–F1186

    Article  CAS  Google Scholar 

  4. Kurtz A (2012) Renal connexins and blood pressure. Biochim Biophys Acta 1818:1903–1908

    Article  CAS  PubMed  Google Scholar 

  5. Bobbie MW, Roy S, Trudeau K, Munger SJ, Simon AM, Roy S (2001) Reduced connexin 43 expression and its effect on the development of vascular lesions in retinas of diabetic mice. Invest Ophthalmol Vis Sci 51:3758–3763

    Article  Google Scholar 

  6. Li AF, Roy S (2009) High glucose induced downregulation of connexin 43 expression promotes apoptosis in microvascular endothelial cells. Invest Ophthalmol Vis Sci 50:1400–1407

    Article  PubMed  Google Scholar 

  7. Zhang J, Hill CE (2005) Differential connexin expression in preglomerular and postglomerular vasculature: accentuation during diabetes. Kidney Int 68:1171–1185

    Article  CAS  PubMed  Google Scholar 

  8. Zhang JH, Kawashima S, Yokoyama M, Huang P, Hill CE (2006) Increased eNOS accounts for changes in connexin expression in renal arterioles during diabetes. Anat Rec A: Discov Mol Cell Evol Biol 288:1000–1008

    Article  Google Scholar 

  9. Li AF, Sato T, Haimovici R, Okamoto T, Roy S (2003) High glucose alters connexin 43 expression and gap junction intercellular communication activity in retinal pericytes. Invest Ophthalmol Vis Sci 44:5376–5382

    Article  PubMed  Google Scholar 

  10. Sato T, Haimovici R, Kao R, Li AF, Roy S (2002) Downregulation of connexin 43 expression by high glucose reduces gap junction activity in microvascular endothelial cells. Diabetes 51:1565–1571

    Article  CAS  PubMed  Google Scholar 

  11. Diabetes UK (2010) Diabetes in the UK 2010: key statistics on diabetes. Diabetes UK, London. Available from www.diabetes.org.uk/documents/reports/diabetes_in_the_uk_2010.pdf

  12. Wada J, Makino H (2013) Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci 124:139–152

    Article  CAS  PubMed  Google Scholar 

  13. Oyamada M, Takebe K, Oyamada Y (2013) Regulation of connexin expression by transcription factors and epigenetic mechanisms. Biochim Biophys Acta Biomembr 1828:118–133

    Article  CAS  Google Scholar 

  14. Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kronengold J, Srinivas M, Verselis K (2012) The N-terminal half of the connexin protein contains the core elements of the pore and voltage gates. J Membr Biol 245:453–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Herve JC, Bourmeyster N, Sarrouilhe D, Duffy HS (2007) Gap junctional complexes: from partners to functions. Prog Biophys Mol Biol 94:29–65

    Article  CAS  PubMed  Google Scholar 

  17. Lampe PD, Lau AF (2004) The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36:1171–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Nielsen MS, Nygaard Axelsen L, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou NH (2012) Gap junctions. Compr Physiol 2:1981–2035

    PubMed  Google Scholar 

  19. Wang N, de Bock M, Decrock E et al (2013) Paracrine signaling through plasma membrane hemichannels. Biochim Biophys Acta 1828:35–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Goldberg GS, Alexander DB, Pellicena P, Zhang ZY, Tsuda H, Miller WT (2003) Src phosphorylates Cas on tyrosine 253 to promote migration of transformed cells. J Biol Chem 278:46533–46540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fujimoto K, Nagafuchi A, Tsukita S, Kuraoka A, Ohokuma A, Shibata Y (1997) Dynamics of connexins, E-cadherin and alpha-catenin on cell membranes during gap junction formation. J Cell Sci 110:311–322

    CAS  PubMed  Google Scholar 

  22. Defamie N, Chepied A, Mesnil M (2014) Connexins, gap junctions and tissue invasion. FEBS Lett 588:1331–1338

    Article  CAS  PubMed  Google Scholar 

  23. Pfenniger A, Wohlwend A, Kwak BR (2011) Mutations in connexin genes and disease. Eur J Clin Investig 41:103–116

    Article  CAS  Google Scholar 

  24. Sahu G, Bera AK (2013) Contribution of intracellular calcium and pH in ischemic uncoupling of cardiac gap junction channels formed of connexins 43, 40, and 45: a critical function of C-terminal domain. PLoS One 8:e60506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Tsuchida S, Arai Y, Kishida T et al (2013) Silencing the expression of connexin 43 decreases inflammation and joint destruction in experimental arthritis. J Orthop Res 31:525–530

    Article  CAS  PubMed  Google Scholar 

  26. Le Gal L, Alonso F, Wagner C et al (2014) Restoration of connexin 40 (Cx40) in renin-producing cells reduces the hypertension of Cx40 null mice. Hypertension 63:1198–1204

    Article  PubMed  Google Scholar 

  27. Firouzi M, Kok B, Spiering W et al (2006) Polymorphisms in human connexin40 gene promoter are associated with increased risk of hypertension in men. J Hypertens 24:325–330

    Article  CAS  PubMed  Google Scholar 

  28. Wright JA, Richards T, Becker DL (2012) Connexins and diabetes. Cardiol Res Pract 2012:496904

    PubMed Central  PubMed  Google Scholar 

  29. Tien T, Barrette KF, Chronopoulos A, Roy S (2013) Effects of high glucose-induced Cx43 downregulation on occludin and ZO-1 expression and tight junction barrier function in retinal endothelial cells. Invest Ophthalmol Vis Sci 3(54):6518–6525

    Article  Google Scholar 

  30. Inoguchi T, Yu HY, Imamura M et al (2001) Altered gap junction activity in cardiovascular tissues of diabetes. Med Electron Microsc 34:86–91

    Article  CAS  PubMed  Google Scholar 

  31. Wagner C, Kurtz A (2013) Distribution and functional relevance of connexins in renin-producing cells. Pflugers Arch 465:71–77

    Article  CAS  PubMed  Google Scholar 

  32. Krattinger N, Capponi A, Mazzolai L et al (2007) Connexin40 regulates renin production and blood pressure. Kidney Int 72:814–822

    Article  CAS  PubMed  Google Scholar 

  33. Takenaka T, Inoue T, Kanno Y, Okada H, Meaney KR, Hill CE, Suzuki H (2008) Expression and role of connexins in the rat renal vasculature. Kidney Int 73:415–422

    Article  CAS  PubMed  Google Scholar 

  34. Haefliger JA, Castillo E, Waeber G et al (1997) Hypertension increases connexin43 in a tissue-specific manner. Circulation 18:1007–1014

    Article  Google Scholar 

  35. Haefliger JA, Krattinger N, Martin D et al (2006) Connexin43-dependent mechanism modulates renin secretion and hypertension. J Clin Invest 116:405–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Gerl M, Kurt B, Kurtz A, Wagner C (2014) Connexin 43 is not essential for the control of renin synthesis and secretion. Pflugers Arch 466:1003–1009

    Article  CAS  PubMed  Google Scholar 

  37. Takenaka T, Inoue H, Okada Y et al (2011) Altered gap junctional communication and renal haemodynamics in Zucker fatty rat model of type 2 diabetes. Diabetologia 54:2192–2201

    Article  CAS  PubMed  Google Scholar 

  38. Loeffler I, Hopfer U, Koczan D, Wolf G (2011) Type VIII collagen modulates TGF-β1-induced proliferation of mesangial cells. J Am Soc Nephrol 22:649–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Cove-Smith A, Hendry BM (2008) The regulation of mesangial cell proliferation. Nephron Exp Nephrol 108:74–79

    Article  Google Scholar 

  40. Yao J, Zhu Y, Morioka T, Oite T, Kitamura M (2007) Pathophysiological roles of gap junction in glomerular mesangial cells. J Membr Biol 217:123–130

    Article  CAS  PubMed  Google Scholar 

  41. Xie X, Lan T, Chang X et al (2013) Connexin43 mediates NF-κB signalling activation induced by high glucose in GMCs: involvement of c-Src. Cell Commun Signal 11:38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yao J, Morioka T, Oite T (2000) PDGF regulates gap junction communication and connexin43 phosphorylation by PI 3-kinase in mesangial cells. Kidney Int 57:1915–1926

    Article  CAS  PubMed  Google Scholar 

  43. Morioka T, Okada S, Nameta M et al (2013) Glomerular expression of connexin 40 and connexin 43 in rat experimental glomerulonephritis. Clin Exp Nephrol 17:191–204

    Article  CAS  PubMed  Google Scholar 

  44. Dalla Vestra M, Saller A, Mauer M, Fioretto P (2001) Role of mesangial expansion in the pathogenesis of diabetic nephropathy. J Nephrol 14:S51–S57

    PubMed  Google Scholar 

  45. Zhang X, Chen X, Wu D et al (2006) Downregulation of connexin 43 expression by high glucose induces senescence in glomerular mesangial cells. J Am Soc Nephrol 17:1532–1542

    Article  CAS  PubMed  Google Scholar 

  46. Liu L, Hu X, Cai GY et al (2012) High glucose-induced hypertrophy of mesangial cells is reversed by connexin43 overexpression via PTEN/Akt/mTOR signaling. Nephrol Dial Transplant 27:90–100

    Article  CAS  PubMed  Google Scholar 

  47. Giepmans BN, Hengeveld T, Postma FR, Moolenaar WH (2001) Interaction of c-Src with gap junction protein connexin-43: role in the regulation of cell-cell communication. J Biol Chem 276:8544–8549

    Article  CAS  PubMed  Google Scholar 

  48. Gilleron J, Fiorini C, Carette D et al (2008) Molecular reorganization of Cx43, ZO-1 and Src complexes during the endocytosis of gap junction plaques in response to a non-genomic carcinogen. J Cell Sci 121:4069–4078

    Article  CAS  PubMed  Google Scholar 

  49. Suzaki Y, Yoshizumi M, Kagami S et al (2004) BMK1 is activated in glomeruli of diabetic rats and in mesangial cells by high glucose conditions. Kidney Int 65:1749–1760

    Article  CAS  PubMed  Google Scholar 

  50. Prabhakar SS (2005) Pathogenic role of nitric oxide alterations in diabetic nephropathy. Curr Diabetes Rep 5:449–454

    Article  CAS  Google Scholar 

  51. Awad A, Webb R, Carey R, Siragy HM (2004) Renal nitric oxide production is decreased in diabetic rats and improved by AT receptor blockade. J Hypertens 22:1571–1577

    Article  CAS  PubMed  Google Scholar 

  52. Prabhakar SP, Starnes J, Shi S, Lonis B, Tran R (2007) Diabetic nephropathy is associated with oxidative stress and decreased renal nitric oxide production. J Am Soc Nephrol 18:2945–2952

    Article  CAS  PubMed  Google Scholar 

  53. Mumtaz F, Dashwood M, Khan M, Thompson CS, Mikhailidis DP, Morgan RJ (2004) Down-regulation of nitric oxide synthase in the diabetic rabbit kidney: potential relevance to the early pathogenesis of diabetic nephropathy. Curr Med Res Opin 20:1–6

    Article  CAS  PubMed  Google Scholar 

  54. Yao J, Hiramatsu N, Zhu Y, Morioka T, Takeda M, Oite T, Kitamura M (2005) Nitric oxide-mediated regulation of connexin43 expression and gap junctional intercellular communication in mesangial cells. J Am Soc Nephrol 16:58–67

    Article  CAS  PubMed  Google Scholar 

  55. Lu D, Soleymani S, Madakshire R, Insel PA (2012) ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors. FASEB J 26:2580–2591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Retamal MA, Cortés CJ, Reuss L, Bennett MVL, Sáez JC (2006) S-Nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci U S A 103:4475–4480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Hernández-Salinas R, Vielma AZ, Arismendi MN, Boric MP, Sáez JC, Velarde V (2013) Boldine prevents renal alterations in diabetic rats. J Diabetes Res 2013:593672

    Article  PubMed Central  PubMed  Google Scholar 

  58. Hillis GS, Duthie LA, Brown PA, Simpson JG, MacLeod AM, Haites NE (1997) Upregulation and co-localization of connexin43 and cellular adhesion molecules in inflammatory renal disease. J Pathol 182:373–379

    Article  CAS  PubMed  Google Scholar 

  59. Hillis GS, Duthie LA, Mlynski R et al (1997) The expression of connexin 43 in human kidney and cultured renal cells. Nephron 75:458–463

    Article  CAS  PubMed  Google Scholar 

  60. Yaoita E, Yao J, Yoshida Y et al (2002) Up-regulation of connexin43 in glomerular podocytes in response to injury. Am J Pathol 161:1597–1606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Yan Q, Gao K, Chi Y, Li K et al (2012) NADPH oxidase-mediated upregulation of connexin43 contributes to podocyte injury. Free Radic Biol Med 15:1286–1297

    Article  Google Scholar 

  62. Sawai K, Mukoyama M, Mori K et al (2006) Redistribution of connexin43 expression in glomerular podocytes predicts poor renal prognosis in patients with type 2 diabetes and overt nephropathy. Nephrol Dial Transplant 21:2472–2477

    Article  CAS  PubMed  Google Scholar 

  63. Hills CE, Squires PE (2011) The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy. Cytokine Growth Factor Rev 22:131–139

    CAS  PubMed  Google Scholar 

  64. Hills CE, Squires PE (2010) TGF-β1-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am J Nephrol 31:68–74

    Article  CAS  PubMed  Google Scholar 

  65. Mege RM, Matsuzaki F, Gallin WJ, Goldberg JI, Cunningham BA, Edelman GM (1988) Construction of epithelioid sheets by transfection of mouse sarcoma cells with cDNAs for chicken cell adhesion molecules. Proc Natl Acad Sci U S A 85:7274–7278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Jongen WM, Fitzgerald DJ, Asamoto M et al (1991) Regulation of connexin 43-mediated gap junctional intercellular communication by Ca2+ in mouse epidermal cells is controlled by E-cadherin. J Cell Biol 114:545–555

    Article  CAS  PubMed  Google Scholar 

  67. Hills CE, Siamantouras E, Smith SW, Cockwell P, Liu KK, Squires PE (2012) TGFβ modulates cell-to-cell communication in early epithelial-to-mesenchymal transition. Diabetologia 55:812–824

    Article  CAS  PubMed  Google Scholar 

  68. Hills CE, Kerr MI, Wall MJ, Squires PE (2013) Visfatin reduces gap junction mediated cell-to-cell communication in proximal tubule-derived epithelial cells. Cell Physiol Biochem 32:1200–1212

    Article  CAS  PubMed  Google Scholar 

  69. Hirschberg R (2005) Wound healing in the kidney: complex interactions in renal interstitial fibrogenesis. J Am Soc Nephrol 16:9–11

    Article  PubMed  Google Scholar 

  70. Liu Y (2006) Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 69:213–217

    Article  CAS  PubMed  Google Scholar 

  71. Wright CS, Pollok S, Flint DJ, Brandner JM, Martin PE (2012) The connexin mimetic peptide Gap27 increases human dermal fibroblast migration in hyperglycemic and hyperinsulinemic conditions in vitro. J Cell Physiol 227:77–87

    Article  CAS  PubMed  Google Scholar 

  72. Qiu C, Coutinho P, Frank S et al (2003) Targeting connexin43 expression accelerates the rate of wound repair. Curr Biol 13:1697–1703

    Article  CAS  PubMed  Google Scholar 

  73. Wang CM, Lincoln J, Cook JE, Becker DL (2007) Abnormal connexin expression underlies delayed wound healing in diabetic skin. Diabetes 56:2809–2817

    Article  CAS  PubMed  Google Scholar 

  74. Mendoza-Naranjo A, Cormie P, Serrano AE et al (2012) Targeting Cx43 and N- cadherin, which are abnormally upregulated in venous leg ulcers, influences migration, adhesion and activation of Rho GTPases. PLoS One 7:e37374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Abed A, Toubas J, Kavvadas P et al (2014) Targeting connexin 43 protects against the progression of experimental chronic kidney disease in mice. Kidney Int 86:768–779

    Article  CAS  PubMed  Google Scholar 

  76. Sipos A, Vargas SL, Toma I, Hanner F, Willecke K, Peti-Peterdi J (2009) Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis. J Am Soc Nephrol 20:1724–1732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Svenningsen P, Burford JL, Peti-Peterdi J (2013) ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct. Front Physiol 4:292

    Article  PubMed Central  PubMed  Google Scholar 

  78. Hills CE, Bland R, Wheelans DC, Bennett J, Ronco PM, Squires PE (2006) Glucose-evoked alterations in connexin43-mediated cell-to-cell communication in human collecting duct: a possible role in diabetic nephropathy. Am J Physiol Renal Physiol 291:F1045–F1051

    Article  CAS  PubMed  Google Scholar 

  79. Hills CE, Bland R, Squires PE (2012) Functional expression of TRPV4 channels in human collecting duct cells: implications for secondary hypertension in diabetic nephropathy. Exp Diabetes Res 2012:936518

    Article  PubMed Central  PubMed  Google Scholar 

  80. Hills CE, Bland R, Bennett J, Ronco PM, Squires PE (2009) TGF-β1 mediates glucose-evoked up-regulation of connexin-43 cell-to-cell communication in HCD-cells. Cell Physiol Biochem 24:177–186

    Article  CAS  PubMed  Google Scholar 

  81. Lee YC, Yellowley CE, Li Z, Donahue HJ, Rannels DE (1997) Expression of functional gap junctions in cultured pulmonary alveolar epithelial cells. Am J Physiol 272:L1105–L1114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the generous support of Diabetes UK (BDA:11/0004215 and BDA:12/0004546), an EFSD/Janssen grant and a contribution from the Lincoln Institute of Health.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

All authors contributed to drafting the manuscript and have approved the final version for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire E. Hills.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hills, C.E., Price, G.W. & Squires, P.E. Mind the gap: connexins and cell–cell communication in the diabetic kidney. Diabetologia 58, 233–241 (2015). https://doi.org/10.1007/s00125-014-3427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3427-1

Keywords

Navigation