Skip to main content

Pancreatic T cell protein–tyrosine phosphatase deficiency affects beta cell function in mice

Abstract

Aims/hypothesis

T cell protein tyrosine phosphatase (TCPTP, encoded by PTPN2) regulates cytokine-induced pancreatic beta cell apoptosis and may contribute to the pathogenesis of type 1 diabetes. However, the role of TCPTP in pancreatic endocrine function and insulin secretion remains largely unknown.

Methods

To investigate the endocrine role of pancreatic TCPTP we generated mice with pancreas Ptpn2/TCPTP deletion (panc-TCPTP KO).

Results

When fed regular chow, panc-TCPTP KO and control mice exhibited comparable glucose tolerance. However, when challenged with prolonged high fat feeding panc-TCPTP KO mice exhibited impaired glucose tolerance and attenuated glucose-stimulated insulin secretion (GSIS). The defect in GSIS was recapitulated in primary islets ex vivo and after TCPTP pharmacological inhibition or lentiviral-mediated TCPTP knockdown in the glucose-responsive MIN6 beta cells, consistent with this being cell autonomous. Reconstitution of TCPTP in knockdown cells reversed the defect in GSIS demonstrating that the defect was a direct consequence of TCPTP deficiency. The reduced insulin secretion in TCPTP knockdown MIN6 beta cells was associated with decreased insulin content and glucose sensing. Furthermore, TCPTP deficiency led to enhanced tyrosyl phosphorylation of signal transducer and activator of transcription 1 and 3 (STAT 1/3), and substrate trapping studies in MIN6 beta cells identified STAT 1/3 as TCPTP substrates. STAT3 pharmacological inhibition and small interfering RNA-mediated STAT3 knockdown in TCPTP deficient cells restored GSIS to control levels, indicating that the effects of TCPTP deficiency were mediated, at least in part, through enhanced STAT3 phosphorylation and signalling.

Conclusions/interpretation

These studies identify a novel role for TCPTP in insulin secretion and uncover STAT3 as a physiologically relevant target for TCPTP in the endocrine pancreas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

ER:

Endoplasmic reticulum

GK:

Glucokinase

GLUT2:

Glucose transporter 2

GSIS:

Glucose-stimulated insulin secretion

GTT:

Glucose tolerance test

HFD:

High fat diet

IR:

Insulin receptor

ITT:

Insulin tolerance test

KO:

Knockout

Panc-TCPTP KO:

Pancreatic Ptpn2/TCPTP knockout

PDX1:

Pancreatic and duodenal homeobox 1

PTKs:

Protein tyrosine kinases

PTP1B:

Protein tyrosine phosphatase 1B

PTPs:

Protein tyrosine phosphatases

RIP:

Rat insulin promoter

RTKs:

Receptor protein tyrosine kinases

SHP2:

Src homology phosphatase 2

shRNA:

Small hairpin RNA

siRNA:

Small interfering RNA

STAT:

Signal transducer and activator of transcription

TCPTP:

T cell protein tyrosine phosphatase

References

  1. Biddinger SB, Kahn CR (2006) From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68:123–158

    CAS  PubMed  Article  Google Scholar 

  2. Michael MD, Kulkarni RN, Postic C et al (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97

    CAS  PubMed  Article  Google Scholar 

  3. Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339

    CAS  PubMed  Article  Google Scholar 

  4. Kulkarni RN, Holzenberger M, Shih DQ et al (2002) beta-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter beta-cell mass. Nat Genet 31:111–115

    CAS  PubMed  Google Scholar 

  5. Tiganis T, Bennett AM (2007) Protein tyrosine phosphatase function: the substrate perspective. Biochem J 402:1–15

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Tiganis T, Bennett AM, Ravichandran KS, Tonks NK (1998) Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T cell protein tyrosine phosphatase. Mol Cell Biol 18:1622–1634

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Galic S, Klingler-Hoffmann M, Fodero-Tavoletti MT et al (2003) Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol Cell Biol 23:2096–2108

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. van Vliet C, Bukczynska PE, Puryer MA et al (2005) Selective regulation of tumor necrosis factor-induced Erk signaling by Src family kinases and the T cell protein tyrosine phosphatase. Nat Immunol 6:253–260

    PubMed  Article  Google Scholar 

  9. Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML, McGlade CJ (2002) The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol 12:446–453

    CAS  PubMed  Article  Google Scholar 

  10. Fukushima A, Loh K, Galic S, et al T cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis. Diabetes 59:1906-1914

  11. ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y et al (2002) Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 22:5662–5668

    PubMed Central  PubMed  Article  Google Scholar 

  12. Aoki N, Matsuda T (2002) A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Mol Endocrinol 16:58–69

    CAS  PubMed  Article  Google Scholar 

  13. Lu X, Chen J, Sasmono RT et al (2007) T cell protein tyrosine phosphatase, distinctively expressed in activated-B cell-like diffuse large B cell lymphomas, is the nuclear phosphatase of STAT6. Mol Cell Biol 27:2166–2179

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. You-Ten KE, Muise ES, Itie A et al (1997) Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J Exp Med 186:683–693

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. Wiede F, Shields BJ, Chew SH et al (2011) T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J Clin Investig 121:4758–4774

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. Loh K, Merry TL, Galic S et al (2012) T cell protein tyrosine phosphatase (TCPTP) deficiency in muscle does not alter insulin signalling and glucose homeostasis in mice. Diabetologia 55:468–478

    CAS  PubMed  Article  Google Scholar 

  17. Loh K, Fukushima A, Zhang X et al (2011) Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab 14:684–699

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. Gurzov EN, Tran M, Fernandez-Rojo MA et al (2014) Hepatic oxidative stress promotes insulin-STAT-5 signaling and obesity by inactivating protein tyrosine phosphatase N2. Cell Metab 20:85–102

    CAS  PubMed  Article  Google Scholar 

  19. Moore F, Colli ML, Cnop M et al (2009) PTPN2, a candidate gene for type 1 diabetes, modulates interferon-gamma-induced pancreatic beta-cell apoptosis. Diabetes 58:1283–1291

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Santin I, Moore F, Colli ML et al (2011) PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic beta-cell apoptosis via regulation of the BH3-only protein Bim. Diabetes 60:3279–3288

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. Ize-Ludlow D, Lightfoot YL, Parker M et al (2011) Progressive erosion of beta-cell function precedes the onset of hyperglycemia in the NOD mouse model of type 1 diabetes. Diabetes 60:2086–2091

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Bettaieb A, Liu S, Xi Y et al (2011) Differential regulation of endoplasmic reticulum stress by protein tyrosine phosphatase 1B and T cell protein tyrosine phosphatase. J Biol Chem 11:9225–9235

    Article  Google Scholar 

  23. Bettaieb A, Xi Y, Hosein E et al (2014) Pancreatic T cell protein-tyrosine phosphatase deficiency ameliorates cerulein-induced acute pancreatitis. Cell Commun Signal 12:13

    PubMed Central  PubMed  Article  Google Scholar 

  24. Liu S, Xi Y, Bettaieb A, et al (2014) Disruption of protein-tyrosine phosphatase 1B expression in the pancreas affects beta-cell function. Endocrinology: en20132004

  25. Zhang S, Chen L, Luo Y, Gunawan A, Lawrence DS, Zhang ZY (2009) Acquisition of a potent and selective TC-PTP inhibitor via a stepwise fluorophore-tagged combinatorial synthesis and screening strategy. J Am Chem Soc 131:13072–13079

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Zhang X, Yue P, Page BD et al (2012) Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc Natl Acad Sci U S A 109:9623–9628

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  27. Guillam MT, Hummler E, Schaerer E et al (1997) Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet 17:327–330

    CAS  PubMed  Article  Google Scholar 

  28. Hani EH, Stoffers DA, Chevre JC et al (1999) Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. J Clin Investig 104:R41–R48

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  29. Aizawa T, Asanuma N, Terauchi Y et al (1996) Analysis of the pancreatic beta cell in the mouse with targeted disruption of the pancreatic beta cell-specific glucokinase gene. Biochem Biophys Res Commun 229:460–465

    PubMed  Article  Google Scholar 

  30. Leroux L, Desbois P, Lamotte L et al (2001) Compensatory responses in mice carrying a null mutation for Ins1 or Ins2. Diabetes 50(Suppl 1):S150–S153

    CAS  PubMed  Article  Google Scholar 

  31. Wang J, Takeuchi T, Tanaka S et al (1999) A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Investig 103:27–37

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Gupta RK, Vatamaniuk MZ, Lee CS et al (2005) The MODY1 gene HNF-4alpha regulates selected genes involved in insulin secretion. J Clin Investig 115:1006–1015

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. Namkung Y, Skrypnyk N, Jeong MJ et al (2001) Requirement for the L-type Ca(2+) channel alpha(1D) subunit in postnatal pancreatic beta cell generation. J Clin Investig 108:1015–1022

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. Fukushima A, Loh K, Galic S et al (2010) T cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis. Diabetes 59:1906–1914

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  35. Schindler C, Levy DE, Decker T (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282:20059–20063

    CAS  PubMed  Article  Google Scholar 

  36. Wicksteed B, Brissova M, Yan W et al (2010) Conditional gene targeting in mouse pancreatic ss-Cells: analysis of ectopic Cre transgene expression in the brain. Diabetes 59:3090–3098

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. Kushner JA, Haj FG, Klaman LD et al (2004) Islet-sparing effects of protein tyrosine phosphatase-1b deficiency delays onset of diabetes in IRS2 knockout mice. Diabetes 53:61–66

    CAS  PubMed  Article  Google Scholar 

  38. Zhang SS, Hao E, Yu J et al (2009) Coordinated regulation by Shp2 tyrosine phosphatase of signaling events controlling insulin biosynthesis in pancreatic beta-cells. Proc Natl Acad Sci U S A 106:7531–7536

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  39. Mekada K, Abe K, Murakami A et al (2009) Genetic differences among C57BL/6 substrains. Exp Anim / Japan Assoc Lab Anim Sci 58:141–149

    CAS  Google Scholar 

  40. Merry TL, Tran M, Stathopoulos M et al (2014) High-fat-fed obese glutathione peroxidase 1-deficient mice exhibit defective insulin secretion but protection from hepatic steatosis and liver damage. Antioxid Redox Signal 20:2114–2129

    CAS  PubMed  Article  Google Scholar 

  41. Kido Y, Burks DJ, Withers D et al (2000) Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Investig 105:199–205

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. Yaekura K, Julyan R, Wicksteed BL et al (2003) Insulin secretory deficiency and glucose intolerance in Rab3A null mice. J Biol Chem 278:9715–9721

    CAS  PubMed  Article  Google Scholar 

  43. Gorogawa S, Fujitani Y, Kaneto H et al (2004) Insulin secretory defects and impaired islet architecture in pancreatic beta-cell-specific STAT3 knockout mice. Biochem Biophys Res Commun 319:1159–1170

    CAS  PubMed  Article  Google Scholar 

  44. Cui Y, Huang L, Elefteriou F et al (2004) Essential role of STAT3 in body weight and glucose homeostasis. Mol Cell Biol 24:258–269

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  45. Gannon M, Shiota C, Postic C, Wright CV, Magnuson M (2000) Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas. Genesis 26:139–142

    CAS  PubMed  Article  Google Scholar 

  46. Lee JY, Hennighausen L (2005) The transcription factor Stat3 is dispensable for pancreatic beta-cell development and function. Biochem Biophys Res Commun 334:764–768

    CAS  PubMed  Article  Google Scholar 

  47. Kostromina E, Gustavsson N, Wang X et al (2010) Glucose intolerance and impaired insulin secretion in pancreas-specific signal transducer and activator of transcription-3 knockout mice are associated with microvascular alterations in the pancreas. Endocrinology 151:2050–2059

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. Kim S, Kim HS, Chung KW et al (2007) Essential role for signal transducer and activator of transcription-1 in pancreatic beta-cell death and autoimmune type 1 diabetes of nonobese diabetic mice. Diabetes 56:2561–2568

    CAS  PubMed  Article  Google Scholar 

  49. Moore F, Naamane N, Colli ML et al (2011) STAT1 is a master regulator of pancreatic {beta}-cell apoptosis and islet inflammation. J Biol Chem 286:929–941

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  50. Shields BJ, Court NW, Hauser C, Bukczynska PE, Tiganis T (2008) Cell cycle-dependent regulation of SFK, JAK1 and STAT3 signalling by the protein tyrosine phosphatase TCPTP. Cell Cycle 7:3405–3416

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Melton (Harvard University, Boston, MA, USA) for the Pdx1-Cre transgenic mice.

Funding statement

This work was supported by a research grant from the Juvenile Diabetes Research Foundation (1-2009-337) and National Institutes of Health (NIH) grants R56 DK084317, R01 DK090492 and R01 DK095359 to FGH and K99 DK100736 to AB. Research in the Kulkarni laboratory is funded by NIH grants R01 DK67536 and R01 DK103215, Zhang laboratory by R01 CA69202 and the Tiganis laboratory by the National Health and Medical Research Council (NHMRC) of Australia (APP1047055). T. Tiganis is an NHMRC Principal Research Fellow (APP1002693).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

YX, SL and AB designed and performed research, analysed data and revised the manuscript. KM, IM, EH, SC, FW and SZ performed research and revised the manuscript. ZYZ, RK and TT contributed reagents, analysed data, provided intellectual input and revised the manuscript. FH designed research, analysed data, provided intellectual input and wrote the manuscript. All authors approved the final version. FH is the guarantor of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawaz G. Haj.

Additional information

Yannan Xi and Siming Liu contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Methods

(PDF 294 kb)

ESM Table 1

(PDF 136 kb)

ESM Fig. 1

(PDF 388 kb)

ESM Fig. 2

(PDF 320 kb)

ESM Fig. 3

(PDF 819 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xi, Y., Liu, S., Bettaieb, A. et al. Pancreatic T cell protein–tyrosine phosphatase deficiency affects beta cell function in mice. Diabetologia 58, 122–131 (2015). https://doi.org/10.1007/s00125-014-3413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3413-7

Keywords

  • Insulin secretion
  • Ptpn2
  • STAT1
  • STAT3
  • T cell protein–tyrosine phosphatase
  • Type 2 diabetes