Skip to main content

Inhibition of NADPH oxidase-1 preserves beta cell function



Upregulation of the reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX)-1 in islets and beta cells follows acute exposure to inflammatory cytokines and is concomitant with beta cell dysfunction. NOX-1 is a candidate mediator of inflammation-induced beta cell dysfunction. This study aimed to determine whether selective inhibition of NADPH oxidase-1 presents a new strategy to preserve beta cell function.


Induced beta cell dysfunction was studied in primary human donor islets, isolated mouse islets and murine beta cell lines. Islets and beta cells were stimulated with inflammatory cytokines (TNF-α, IL-1β, IFN-γ). NOX-1 activity was blocked by the selective inhibitor ML171.


Cytokine induction of intracellular ROS was reduced 80% with 1 μmol/l ML171 in murine beta cell lines (p < 0.01). Cytokine-induced apoptosis, measured by caspase-3 activation or quantified fluorescence microscopy, was prevented in islets and beta cell lines up to 100% with ML171 in a concentration-dependent manner (p < 0.05). Functionally, glucose-stimulated insulin secretion was abolished by cytokine exposure but preserved by ML171 in isolated mouse islets and murine beta cell lines. A feed-forward regulation of NOX-1 in islets and beta cell lines was disrupted by ML171.


Stimulation of NOX-1 activity is a major component of inflammatory cytokine-induced beta cell dysfunction. Significant protection of beta cells is conferred with selective inhibition of NOX-1. Suppression of NOX-1 activity may present a new therapeutic strategy to preserve and protect beta cell function in diabetes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10



C57 black 6


6-Carboxy-2′,7′-dichlorodihydrofluorescein diacetate, di(acetoxymethyl ester)


Glyceraldehyde 3-phosphate dehydrogenase


Glucose-stimulated insulin secretion


NADPH oxidase


Proinflammatory cytokine


Relative fluorescence unit


Reactive oxygen species


Tris-buffered saline


  1. Grankvist K, Marklund SL, Taljedal IB (1981) CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199:393–398

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463–466

    CAS  PubMed  Article  Google Scholar 

  3. Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742

    CAS  PubMed  Article  Google Scholar 

  4. Modak MA, Datar SP, Bhonde RR, Ghaskadbi SS (2007) Differential susceptibility of chick and mouse islets to streptozotocin and its co-relation with islet antioxidant status. J Comp Physiol B 177:247–257

    CAS  PubMed  Article  Google Scholar 

  5. Lenzen S (2008) Oxidative stress: the vulnerable beta-cell. Biochem Soc Trans 36:343–347

    CAS  PubMed  Article  Google Scholar 

  6. Janciauskiene S, Ahren B (2000) Fibrillar islet amyloid polypeptide differentially affects oxidative mechanisms and lipoprotein uptake in correlation with cytotoxicity in two insulin-producing cell lines. Biochem Biophys Res Commun 267:619–625

    CAS  PubMed  Article  Google Scholar 

  7. Oliveira HR, Verlengia R, Carvalho CR, Britto LR, Curi R, Carpinelli AR (2003) Pancreatic beta-cells express phagocyte-like NAD(P)H oxidase. Diabetes 52:1457–1463

    CAS  PubMed  Article  Google Scholar 

  8. Cunningham GA, McClenaghan NH, Flatt PR, Newsholme P (2005) L-Alanine induces changes in metabolic and signal transduction gene expression in a clonal rat pancreatic beta-cell line and protects from pro-inflammatory cytokine-induced apoptosis. Clin Sci (Lond) 109:447–455

    CAS  Article  Google Scholar 

  9. Inoguchi T, Nawata H (2005) NAD(P)H oxidase activation: a potential target mechanism for diabetic vascular complications, progressive beta-cell dysfunction and metabolic syndrome. Curr Drug Targets 6:495–501

    CAS  PubMed  Article  Google Scholar 

  10. Nakayama M, Inoguchi T, Sonta T et al (2005) Increased expression of NAD(P)H oxidase in islets of animal models of type 2 diabetes and its improvement by an AT1 receptor antagonist. Biochem Biophys Res Commun 332:927–933

    CAS  PubMed  Article  Google Scholar 

  11. Uchizono Y, Takeya R, Iwase M et al (2006) Expression of isoforms of NADPH oxidase components in rat pancreatic islets. Life Sci 80:133–139

    CAS  PubMed  Article  Google Scholar 

  12. Morgan D, Oliveira-Emilio HR, Keane D et al (2007) Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia 50:359–369

    CAS  PubMed  Article  Google Scholar 

  13. Michalska M, Wolf G, Walther R, Newsholme P (2010) Effects of pharmacological inhibition of NADPH oxidase or iNOS on pro-inflammatory cytokine, palmitic acid or H2O2-induced mouse islet or clonal pancreatic beta-cell dysfunction. Biosci Rep 30:445–453

    CAS  PubMed  Article  Google Scholar 

  14. Volchuk A, Ron D (2010) The endoplasmic reticulum stress response in the pancreatic beta-cell. Diabetes Obes Metab 12(Suppl 2):48–57

    CAS  PubMed  Article  Google Scholar 

  15. Newsholme P, Morgan D, Rebelato E et al (2009) Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell. Diabetologia 52:2489–2498

    CAS  PubMed  Article  Google Scholar 

  16. Weaver JR, Taylor-Fishwick DA (2014) Role of NADPH oxidase in beta cell dysfunction islets of Langerhans. Springer, Dordrecht

    Google Scholar 

  17. Taylor-Fishwick DA (2013) NOX, NOX who is there? The contribution of NADPH oxidase one to beta cell dysfunction. Front Endocrinol (Lausanne) 4:40

    Google Scholar 

  18. Lupi R, del Guerra S, Bugliani M et al (2006) The direct effects of the angiotensin-converting enzyme inhibitors, zofenoprilat and enalaprilat, on isolated human pancreatic islets. Eur J Endocrinol 154:355–361

    CAS  PubMed  Article  Google Scholar 

  19. Shao J, Iwashita N, Ikeda F et al (2006) Beneficial effects of candesartan, an angiotensin II type 1 receptor blocker, on beta-cell function and morphology in db/db mice. Biochem Biophys Res Commun 344:1224–1233

    CAS  PubMed  Article  Google Scholar 

  20. Rebelato E, Mares-Guia TR, Graciano MF et al (2012) Expression of NADPH oxidase in human pancreatic islets. Life Sci 91:244–249

    CAS  PubMed  Article  Google Scholar 

  21. Weaver JR, Holman TR, Imai Y et al (2012) Integration of pro-inflammatory cytokines, 12-lipoxygenase and NOX-1 in pancreatic islet beta cell dysfunction. Mol Cell Endocrinol 358:88–95

    CAS  PubMed  Article  Google Scholar 

  22. Morgan D, Rebelato E, Abdulkader F et al (2009) Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells. Endocrinology 150:2197–2201

    CAS  PubMed  Article  Google Scholar 

  23. Li N, Li B, Brun T et al (2012) NADPH oxidase NOX2 defines a new antagonistic role for reactive oxygen species and cAMP/PKA in the regulation of insulin secretion. Diabetes 61:2842–2850

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Jorns A, Gunther A, Hedrich HJ, Wedekind D, Tiedge M, Lenzen S (2005) Immune cell infiltration, cytokine expression, and beta-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm-iddm rat. Diabetes 54:2041–2052

    PubMed  Article  Google Scholar 

  25. Eizirik DL, Mandrup-Poulsen T (2001) A choice of death–the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44:2115–2133

    CAS  PubMed  Article  Google Scholar 

  26. Catalan V, Gomez-Ambrosi J, Ramirez B et al (2007) Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg 17:1464–1474

    PubMed  Article  Google Scholar 

  27. Steinberg GR (2007) Inflammation in obesity is the common link between defects in fatty acid metabolism and insulin resistance. Cell Cycle 6:888–894

    CAS  PubMed  Article  Google Scholar 

  28. Igoillo-Esteve M, Marselli L, Cunha DA et al (2010) Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 53:1395–1405

    CAS  PubMed  Article  Google Scholar 

  29. Su SC, Pei D, Hsieh CH, Hsiao FC, Wu CZ, Hung YJ (2011) Circulating pro-inflammatory cytokines and adiponectin in young men with type 2 diabetes. Acta Diabetol 48:113–119

    CAS  PubMed  Article  Google Scholar 

  30. Weaver JR, Taylor-Fishwick DA (2013) Regulation of NOX-1 expression in beta cells: a positive feedback loop involving the Src-kinase signaling pathway. Mol Cell Endocrinol 369:35–41

    CAS  PubMed  Article  Google Scholar 

  31. ten Freyhaus H, Huntgeburth M, Wingler K et al (2006) Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res 71:331–341

    PubMed  Article  Google Scholar 

  32. Wind S, Beuerlein K, Eucker T et al (2010) Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br J Pharmacol 161:885–898

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. Laleu B, Gaggini F, Orchard M et al (2010) First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J Med Chem 53:7715–7730

    CAS  PubMed  Article  Google Scholar 

  34. Gianni D, Nicolas N, Zhang H, et al (2010) Optimization and characterization of an inhibitor for NADPH oxidase 1 (NOX-1) Probe Reports from the NIH Molecular Libraries Program. National Center for Biotechnology Information (US), Bethesda (MD)

  35. Yang ZD, Chen M, Wu R, McDuffie M, Nadler JL (2002) The anti-inflammatory compound lisofylline prevents type I diabetes in non-obese diabetic mice. Diabetologia 45:1307–1314

    CAS  PubMed  Article  Google Scholar 

  36. Tilg H, Moschen AR (2008) Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 14:222–231

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. Al-Maskari M, Al-Shukaili A, Al-Mammari A (2010) Pro-inflammatory cytokines in Omani type 2 diabetic patients presenting anxiety and depression. Iran J Immunol 7:124–129

    CAS  PubMed  Google Scholar 

  38. Kang YS, Song HK, Lee MH, Ko GJ, Cha DR (2010) Plasma concentration of visfatin is a new surrogate marker of systemic inflammation in type 2 diabetic patients. Diabetes Res Clin Pract 89:141–149

    CAS  PubMed  Article  Google Scholar 

  39. Altenhofer S, Radermacher KA, Kleikers PW, Wingler K, Schmidt HH (2014) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal. doi:10.1089/ars.2013.5814

    PubMed  Google Scholar 

  40. Gavazzi G, Banfi B, Deffert C et al (2006) Decreased blood pressure in NOX1-deficient mice. FEBS Lett 580:497–504

    CAS  PubMed  Article  Google Scholar 

  41. Matsuno K, Yamada H, Iwata K et al (2005) Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112:2677–2685

    CAS  PubMed  Article  Google Scholar 

  42. Yogi A, Mercure C, Touyz J et al (2008) Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension. Hypertension 51:500–506

    CAS  PubMed  Article  Google Scholar 

  43. O’Leary DP, Bhatt L, Woolley JF et al (2012) TLR-4 signalling accelerates colon cancer cell adhesion via NF-kappaB mediated transcriptional up-regulation of Nox-1. PLoS One 7:e44176

    PubMed Central  PubMed  Article  Google Scholar 

  44. Fukuyama M, Rokutan K, Sano T, Miyake H, Shimada M, Tashiro S (2005) Overexpression of a novel superoxide-producing enzyme, NADPH oxidase 1, in adenoma and well differentiated adenocarcinoma of the human colon. Cancer Lett 221:97–104

    CAS  PubMed  Article  Google Scholar 

  45. Arnold RS, He J, Remo A et al (2007) Nox1 expression determines cellular reactive oxygen and modulates c-fos-induced growth factor, interleukin-8, and Cav-1. Am J Pathol 171:2021–2032

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. Lim SD, Sun C, Lambeth JD et al (2005) Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate 62:200–207

    CAS  PubMed  Article  Google Scholar 

  47. Sancho P, Fabregat I (2010) NADPH oxidase NOX1 controls autocrine growth of liver tumor cells through up-regulation of the epidermal growth factor receptor pathway. J Biol Chem 285:24815–24824

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. Walsh TG, Berndt MC, Carrim N, Cowman J, Kenny D, Metharom P (2014) The role of Nox1 and Nox2 in GPVI-dependent platelet activation and thrombus formation. Redox Biol 2:178–186

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references


Human donor islets were provided by the Integrated Islet Distribution Program (IIDP,


Funding for this work was provided by CDMRP, Department of Defense (PR093521, DAT-F), JDRF International and the Leona M. and Harry B. Helmsley Charitable Trust (DAT-F).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

DAT-F directed the work, provided data interpretation and wrote the article. JRW and WJG acquired research data, contributed to the analysis and interpretation of data and helped to draft and/or review the article. All authors approved this manuscript version. DAT-F is responsible for the integrity of the work as a whole.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David A. Taylor-Fishwick.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

(PDF 62 kb)

ESM Fig. 1

(PDF 99 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weaver, J.R., Grzesik, W. & Taylor-Fishwick, D.A. Inhibition of NADPH oxidase-1 preserves beta cell function. Diabetologia 58, 113–121 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Apoptosis
  • Beta cells
  • Cytokines
  • Diabetes
  • Inflammation
  • ML171
  • NADPH oxidase-1