, Volume 58, Issue 1, pp 37–42 | Cite as

Obesity, diabetes and cancer: insight into the relationship from a cohort with growth hormone receptor deficiency

  • Jaime Guevara-AguirreEmail author
  • Arlan L. Rosenbloom


Obesity with insulin-resistant diabetes and increased cancer risk is a global problem. We consider the alterations of metabolism attendant on the underlying pathogenic overnutrition and the role of the growth hormone (GH)–IGF-1 axis in this interaction. Obesity-induced insulin resistance is a determinant of diabetes. Excess glucose, and an elevated concentration of insulin acting through its own receptors along with complex interactions with the IGF-1 system, will add extra fuel and fuel signalling for malignant growth and induce anti-apoptotic activities, permitting proliferation of forbidden clones. In Ecuador there are ~100 living adults with lifelong IGF-1 deficiency caused by a GH receptor (GHR) mutation who, despite a high percentage of body fat, have markedly increased insulin sensitivity compared with age- and BMI-matched control relatives, and no instances of diabetes, which is present in 6% of unaffected relatives. Only 1 of 20 deceased individuals with GHR deficiency died of cancer vs 20% of ~1,500 relatives. Fewer DNA breaks and increased apoptosis occurred in cell cultures exposed to oxidant agents following addition of serum from GHR-deficient individuals vs serum from control relatives. These changes were reversible by adding IGF-1 to the serum from the GHR-deficient individuals. The reduction in central regulators of pro-ageing signalling thus appears to be the result of an absence of GHR function. The complex inter-relationship of obesity, diabetes and cancer risk is related to excess insulin and fuel supply, in the presence of heightened anti-apoptosis and uninhibited DNA damage when GHR function is normal.


Apoptosis Cancer Diabetes Growth hormone receptor IGF-1 Insulin Obesity Review 



Growth hormone


Growth hormone receptor


IGF-1-binding protein


Mitogen-activated phosphokinase


Phosphatidylinositol 3-kinase


Protein kinase A


Target of rapamycin


Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

JG-A provided the initial draft, which was edited and finalised by both authors.


  1. 1.
    Burke-Gaffney H (1968) The history of medicine in African countries. Med Hist 12:31–412PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Gohdes D, Kaufman S, Valway S (1993) Diabetes in American Indians. An overview. Diabetes Care 6:239–243CrossRefGoogle Scholar
  3. 3.
    Steyn K, Fourie J, Bradshaw D (1992) The impact of chronic diseases of lifestyle and their major risk factors on mortality in South Africa. S Afr Med J 82:227–231PubMedGoogle Scholar
  4. 4.
    Reaven G (1988) Banting Lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607PubMedCrossRefGoogle Scholar
  5. 5.
    Phillips C, Keese-Guoyot E, McManus R et al (2012) High dietary saturated fat intake accentuates obesity risk associated with the fat mass and obesity-associated gene in adults. J Nutr 142:824–831PubMedCrossRefGoogle Scholar
  6. 6.
    Belpomme D, Irigaray P, Hardell R et al (2007) The multitude and diversity of environmental carcinogens. Environ Res 105:414–429PubMedCrossRefGoogle Scholar
  7. 7.
    Wolin KY, Carson K, Colditz GA (2010) Obesity and cancer. Oncologist 15:556–565PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Knudeson A (2001) Two genetic hits to cancer. Nat Rev Cancer 2:157–162CrossRefGoogle Scholar
  9. 9.
    Pollak M, Schernhammer E, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–518PubMedCrossRefGoogle Scholar
  10. 10.
    Hsu I, Kim S, Kabir M, Bergman R (2007) Metabolic syndrome, hyperinsulinaemia, and cancer. Am J Clin Nutr 86:867–871Google Scholar
  11. 11.
    Otake S, Takeda H, Suzuki Y et al (2005) Association of visceral fat accumulation and plasma adiponectin with colorectal adenoma: evidence for participation of insulin resistance. Clin Cancer Res 11:3642–3646PubMedCrossRefGoogle Scholar
  12. 12.
    Thissen J, Ketelslegers H, Underwood L (1994) Nutritional regulation of the insulin like growth factors. Endocrinol Rev 15:80–101Google Scholar
  13. 13.
    Dupont J, Kahan J, Bao-He Q, Metzler P, Helman L, LeRoith D (2001) Insulin and IGF-I induce different patterns of expression in mouse fibroblast NIH-3T3 cells: identification by cDNA microarray analysis. Endocrinology 142:4969–4975PubMedCrossRefGoogle Scholar
  14. 14.
    Guevara-Aguirre J, Al R, Guevara-Aguirre M, Saavedra J, Procel P (2013) Recommended IGF-I dosage causes greater fat accumulation and osseous maturation than lower dosage and may compromise long-term growth effects. J Clin Endocrinol Metab 98:839–845PubMedCrossRefGoogle Scholar
  15. 15.
    Longo V, Fontana L (2010) Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 31:89–98PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Milazzo G, Giorgino F, Damante G et al (1992) Insulin receptor expression and function in human breast cancer cell lines. Cancer Res 52:3924–3930PubMedGoogle Scholar
  17. 17.
    Birsoy K, Possemato R, Lorbeer FK et al (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508:108–112PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Baserga R, Peruzzi F, Krystof R (2003) The IGF-I receptor in cancer biology. Int J Cancer 107:873–877PubMedCrossRefGoogle Scholar
  19. 19.
    Ferguson R, Novossyadlyy R, Fierz Y et al (2012) Hyperinsulinaemia enhances c-Myc-mediated mammary tumour development and advances metastatic progression to the lung in a mouse model of type 2 diabetes. Breast Cancer Res 14:R8PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Klement R, Kämmerer U (2011) Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab (Lond) 8:75CrossRefGoogle Scholar
  21. 21.
    Drake I, Sonestedt D, Gulberg B et al (2012) Dietary intakes of carbohydrates in relation to prostate cancer risk: a prospective study in the Malmö diet and cancer cohort. Am J Nutr 96:1409–1418CrossRefGoogle Scholar
  22. 22.
    Samani A, Yakar S, LeRoith D, Brodt P (2007) The role of the IGF-I system in cancer growth and metastasis: overview and recent insights. Endocr Rev 28:20–47PubMedCrossRefGoogle Scholar
  23. 23.
    Rosenbloom A, Goldstein S, Yip CC (1976) Insulin binding to cultured human fibroblasts increases with normal and precocious aging. Science 193:412–415PubMedCrossRefGoogle Scholar
  24. 24.
    Wijsman C, Rozing M, Streefland T, Leiden Longevity Study group et al (2011) Familial longevity is marked by enhanced insulin sensitivity. Aging Cell 10:114–121PubMedCrossRefGoogle Scholar
  25. 25.
    Benetou B, Trichopoulou A, Orfanos P et al (2008) Conformity to traditional Mediterranean diet and cancer incidence: the Greek EPIC cohort. Brit J Cancer 99:191–195PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Colman R, Anderson R, Johnson S et al (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13:140–156PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Ikeno Y, Hubbard GB, Lee S et al (2009) Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci 64:522–529PubMedCrossRefGoogle Scholar
  29. 29.
    Dossus L, Kaaks R (2004) Nutrition, metabolic factors and cancer risk. Nat Cancer Rev 4:579–591CrossRefGoogle Scholar
  30. 30.
    Sancar A, Lindsey-Boltz L, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Ann Rev Biochem 73:39–85PubMedCrossRefGoogle Scholar
  31. 31.
    van Heijst J, Niessen H, Hoekman K, Schalkwijk CG (2005) Advanced glycation end products in human cancer tissues: detection of Nε-(carboxymethyl)lysine and argpyrimidine. Ann NY Acad Sci 1043:725–733PubMedCrossRefGoogle Scholar
  32. 32.
    Dingli D, Chalub F, Santos F, van Segbroeck S, Pacheco J (2009) Cancer phenotype as the outcome of an evolutionary game between normal and malignant cells. Br J Cancer 101:1130–1138PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Halberg H, Henriksen M, Soderhamn N et al (2005) Effect of intermittent fasting and re-feeding on insulin action in healthy men. J Appl Physiol 99:2128–2136PubMedCrossRefGoogle Scholar
  34. 34.
    Lee P, Durham S, Martínez V, Vásconez O, Powell D, Guevara-Aguirre J (1997) Kinetics of insulin-like growth factor (IGF) and IGF-binding protein responses to a single dose of growth hormone. J Clin Endocrinol Metab 82:2266–2274PubMedGoogle Scholar
  35. 35.
    Wolpin B, Michaud D, Giovannucci E et al (2007) Circulating insulin-like growth factor binding protein-I and the risk of pancreatic cancer. Cancer Res 67:7923–7928PubMedCrossRefGoogle Scholar
  36. 36.
    Wu Y, Yakar S, Hennighausen L, LeRoith D (2002) Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res 62:1030–1035PubMedGoogle Scholar
  37. 37.
    Kolb E, Gorlick R, Maris J et al (2012) Combination testing (Stage 2) of the anti-IGF-I receptor antibody IMC-A12 with rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer 58:729–735PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    MacEwen E, Pastor J, Kutzke J et al (2004) IGF-I receptor contributes to the malignant phenotype in human and canine osteosarcoma. J Cell Biochem 92:77–91PubMedCrossRefGoogle Scholar
  39. 39.
    Chhabra Y, Waters J, Brokks A (2011) Role of the growth hormone/IGF-I axis in cancer. Expert Rev Endocrinol Metab 6:71–84CrossRefGoogle Scholar
  40. 40.
    Belfioiri A, Frasca F, Pandini G, Sciacca L, Vigneri R (2009) Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 30:586–623CrossRefGoogle Scholar
  41. 41.
    Rinderknecht E, Humbel R (1978) The amino acid sequence of human insulin growth factor-I and its structural homology with pro-insulin. J Biol Chem 253:2769–2776PubMedGoogle Scholar
  42. 42.
    Brzozowski A, Dodson E, Dodson G et al (2002) Structural origins of the functional divergence of human insulin growth factor-I and insulin. Biochemistry 41:9389–9397PubMedCrossRefGoogle Scholar
  43. 43.
    Kim J, Accili D (2002) Signaling through IGF-I and insulin receptors: where is the specificity? Growth Horm IGF Res 12:84–90PubMedCrossRefGoogle Scholar
  44. 44.
    Huo J, Xu S, Lin B, Chng WJ, Lam KP (2013) Fas apoptosis inhibitory molecule is upregulated by IGF-I signaling and modulates Akt activation and IRF4 expression in multiple myeloma. Leukemia 27:1165–1171PubMedCrossRefGoogle Scholar
  45. 45.
    Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  46. 46.
    Renehan A, Zwahalen M, Minder C, O’Dwyer S, Shalet M, Egger M (2004) Insulin-like growth factor (IGF)-I, IGF-binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363:1346–1353PubMedCrossRefGoogle Scholar
  47. 47.
    Huang J, Morehouse C, Streicher K et al (2011) Altered expression of insulin receptor isoforms in breast cancer. PLoS ONE 6:e26177PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Margel D, Urbach D, Lipscombe L et al (2013) Metformin use and all-cause and prostate cancer-specific mortality among men with diabetes. J Clin Oncol 31:3069–3075PubMedCrossRefGoogle Scholar
  49. 49.
    Currie C, Poole C, Jenkins-Jones S, Gale E, Johnson J, Morgan C (2012) Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin in survival. Diabetes Care 35:299–304PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Madiraju AK, Erion DM, Rahimi Y et al (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542–546PubMedCrossRefGoogle Scholar
  51. 51.
    Yakar S, LeRoith D, Brodt P (2005) The role of growth hormone /insulin-like growth factor axis in tumour growth and progression: lessons from animal models. Cytokine Growth Factor Rev 16:407–420PubMedCrossRefGoogle Scholar
  52. 52.
    Resnicoff M, Copolla D, Sell C et al (1994) Growth inhibition of human melanoma cells in nude mice by anti-sense strategies to the type-I insulin-like growth factor receptor. Cancer Res 54:4848–4850PubMedGoogle Scholar
  53. 53.
    Suh Y, Atzmon G, Cho M et al (2008) Functionally significant insulin-like growth factor-I receptor mutations in centenarians. Proc Natl Acad Sci 105:3438–3442PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Guevara-Aguirre J, Rosenbloom A, Fielder PJ, Diamond FB Jr, Rosenfeld RG (1993) Growth hormone receptor deficiency in Ecuador: clinical and biochemical phenotype in two populations. J Clin Endocrinol Metab 76:417–423PubMedGoogle Scholar
  55. 55.
    Rosenbloom AL, Guevara-Aguirre J, Rosenfeld RG, Fielder PJ (1990) The little women of Loja: growth hormone receptor deficiency in an inbred population of Southern Ecuador. N Engl J Med 323:1367–1374PubMedCrossRefGoogle Scholar
  56. 56.
    Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3:70ra13PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Steuerman R, Shivah O, Laron Z (2011) Congenital IGF-I deficiency tends to confer protection against postnatal development of malignancies. Eur J Endocrinol 164:485–489PubMedCrossRefGoogle Scholar
  58. 58.
    Gebre-Medhin M, Kindblom LG, Wennbo H, Törnell J, Meis-Kindblom JM (2001) Growth hormone receptor is expressed in human breast cancer. Am J Pathol 158:1217–1222PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Zhou D, Yang J, Huang WD, Wang J, Zhang Q (2013) siRNA-targeted inhibition of growth hormone receptor in human colon cancer SW480 cells. World J Gastroenterol 19:8108–8113PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Guevara Aguirre J, Rosenbloom AL, Balasubramaniam P et al (2014) Enhanced insulin sensitivity in subjects with absent growth hormone receptor signaling despite increased body fat content. The Endocrine Society, Chicago, June 21-24, latebreaking abstract LB-OR02-1 (abstract)Google Scholar
  61. 61.
    Laron Z (2011) Insulin secretion and carbohydrate metabolism in patients with Laron syndrome: from hypoglycaemia to diabetes mellitus. In: Laron Z, Kopchick JJ (eds) Laron syndrome from man to mouse. Springer-Verlag, Berlin/Heidelberg, pp 259–272CrossRefGoogle Scholar
  62. 62.
    Vicente TAR, Rocha IES, Salvatori R et al (2013) Lifetime congenital isolated GH deficiency does not protect from the development of diabetes. Endocr Connect 2:112–117PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Universidad San Francisco de Quito, Diego de Robles & Via InteroceanicaQuitoEcuador
  2. 2.Instituto de Endocrinología IEMYRQuitoEcuador
  3. 3.University of Florida College of MedicineGainesvilleUSA

Personalised recommendations