Diabetologia

, Volume 57, Issue 11, pp 2374–2383 | Cite as

Global DNA methylation levels in human adipose tissue are related to fat distribution and glucose homeostasis

  • Maria Keller
  • Susan Kralisch
  • Kerstin Rohde
  • Dorit Schleinitz
  • Arne Dietrich
  • Michael R. Schön
  • Daniel Gärtner
  • Tobias Lohmann
  • Miriam Dreßler
  • Anke Tönjes
  • Michael Stumvoll
  • Peter Kovacs
  • Mathias Fasshauer
  • Matthias Blüher
  • Yvonne Böttcher
Article

Abstract

Aims/hypothesis

Epigenetic alterations may influence the metabolic pathways involved in human obesity. We hypothesised that global DNA methylation levels in adipose tissue might be associated with obesity and related phenotypes.

Methods

We measured global DNA methylation levels in paired samples of subcutaneous adipose tissue (SAT) and omental visceral adipose tissue (OVAT) from 51 individuals, and in leucocytes from 559 Sorbs, a population from Germany, using LUminometric Methylation Assay (LUMA). To further investigate the underlying mechanisms of the observed associations, we measured global methylation levels in 3T3-L1 adipocytes exposed to glucose, insulin and lipids.

Results

Global methylation levels (±SD) were significantly higher in OVAT (74.27% ± 2.2%) compared with SAT (71.97% ± 2.4%; paired t test, p < 1 × 10−9). Furthermore, global methylation levels in SAT were positive correlates of measures of fat distribution (waist measurement, WHR) and glucose homeostasis (HbA1c) (all p < 0.015 after accounting for multiple testing and covariates). Global methylation levels in the German Sorb cohort were associated with glucose homeostasis, but this association did not withstand adjustment for covariates. Exposure of 3T3-L1 adipocytes to insulin, palmitate and glucose decreased global methylation levels 1 h after treatment relative to controls.

Conclusions/interpretation

Our data suggest that the variability in global methylation in adipose tissue might be related to alterations in glucose metabolism.

Keywords

DNA methylation Epigenetics Glucose homeostasis Human adipose tissue LUMA Subcutaneous Visceral 

Abbreviations

% 5-mC

Percentage of 5-methylcytosine

CpG

Cytosine–phosphate–guanine

DNMT

DNA methyltransferase

LINE-1

Long interspersed nuclear element

LUMA

LUminometric Based Assay

OVAT

Omental visceral adipose tissue

SAT

Subcutaneous adipose tissue

Supplementary material

125_2014_3356_MOESM1_ESM.pdf (96 kb)
ESM Methods(PDF 95 kb)

References

  1. 1.
    Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21:697–738PubMedCrossRefGoogle Scholar
  2. 2.
    Van Gaal LF, Mertens IL, de Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880PubMedCrossRefGoogle Scholar
  3. 3.
    Kissebah AH (1997) Central obesity: measurement and metabolic effects. Diabetes Rev 5:8–20Google Scholar
  4. 4.
    Bjorntorp P (1991) Metabolic implications of body fat distribution. Diabetes Care 14:1132–1143PubMedCrossRefGoogle Scholar
  5. 5.
    Lavebratt C, Almgren M, Ekstrom TJ (2012) Epigenetic regulation in obesity. Int J Obes (Lond) 36:757–765CrossRefGoogle Scholar
  6. 6.
    Pirola L, Balcerczyk A, Okabe J, El Osta A (2010) Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 6:665–675PubMedCrossRefGoogle Scholar
  7. 7.
    Dick JK, Nelson CP, Tsaprouni L et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383:1990–1998PubMedCrossRefGoogle Scholar
  8. 8.
    Barres R, Kirchner H, Rasmussen M et al (2013) Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep 3:1020–1027PubMedCrossRefGoogle Scholar
  9. 9.
    Barres R, Yan J, Egan B et al (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15:405–411PubMedCrossRefGoogle Scholar
  10. 10.
    Rönn T, Volkov P, Davegårdh C et al (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9:e1003572PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Nilsson E, Jansson PA, Perfilyev A et al (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. doi:10.2337/db13-1459 Google Scholar
  12. 12.
    Barres R, Zierath JR (2011) DNA methylation in metabolic disorders. Am J Clin Nutr 93:897–900CrossRefGoogle Scholar
  13. 13.
    Herrera BM, Keildson S, Lindgren CM (2011) Genetics and epigenetics of obesity. Maturitas 69:41–49PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kuroda A, Rauch TA, Todorov I et al (2009) Insulin gene expression is regulated by DNA methylation. PLoS One 4:e6953PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Yokomori N, Tawata M, Onaya T (1999) DNA demethylation during the differentiation of 3T3-L1 cells affects the expression of the mouse GLUT4 gene. Diabetes 48:685–690PubMedCrossRefGoogle Scholar
  16. 16.
    Fujiki K, Kano F, Shiota K, Murata M (2009) Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol 7:38PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Feinberg AP, Irizarry RA, Fradin D et al (2010) Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2:49ra67PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Wang X, Zhu H, Snieder H (2010) Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med 8:87PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Karimi M, Johansson S, Ekstrom TJ (2006) Using LUMA A luminometric-based assay for global DNA-methylation. Epigenetics 1:45–48PubMedCrossRefGoogle Scholar
  20. 20.
    Karimi M, Luttropp K, Ekstrom TJ (2011) Global DNA Methylation analysis using the luminometric methylation assay. Methods Mol Biol 791:135–144PubMedCrossRefGoogle Scholar
  21. 21.
    Turcot V, Tchernof A, Deshaies Y et al (2012) LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes. Clin Epigenetics 4:10PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sunami E, de Maat M, Vu A, Turner RR, Hoon DS (2011) LINE-1 hypomethylation during primary colon cancer progression. PLoS One 6:e18884PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Zhu ZZ, Sparrow D, Hou L et al (2011) Repetitive element hypomethylation in blood leukocyte DNA and cancer incidence, prevalence, and mortality in elderly individuals: the Normative Aging Study. Cancer Causes Control 22:437–447PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Pearce MS, McConnell JC, Potter C et al (2012) Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles. Int J Epidemiol 41:210–217PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Zhu ZZ, Hou L, Bollati V et al (2012) Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis. Int J Epidemiol 41:126–139PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Zhao J, Goldberg J, Bremner JD, Vaccarino V (2012) Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes 61:542–546PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Rohde K, Keller M, Klös M et al (2014) Adipose tissue depot specific promoter methylation of TMEM18. J Mol Med (Berl) 92:881–888Google Scholar
  28. 28.
    Gehrke S, Brueckner B, Schepky A et al (2013) Epigenetic regulation of depot-specific gene expression in adipose tissue. PLoS One 8:e82516PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Gesta S, Blüher M, Yamamoto Y et al (2006) Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci U S A 103:6676–6681PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Yamamoto Y, Gesta S, Lee KY, Tran TT, Saadatirad P, Kahn CR (2010) Adipose depots possess unique developmental gene signatures. Obesity (Silver Spring) 18:872–878CrossRefGoogle Scholar
  31. 31.
    Klöting N, Fasshauer M, Dietrich A et al (2010) Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 299:E506–E515PubMedCrossRefGoogle Scholar
  32. 32.
    Veeramah KR, Tönjes A, Kovacs P et al (2011) Genetic variation in the Sorbs of eastern Germany in the context of broader European genetic diversity. Eur J Hum Genet 19:995–1001PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Böttcher Y, Unbehauen H, Klöting N et al (2009) Adipose tissue expression and genetic variants of the bone morphogenetic protein receptor 1A gene (BMPR1A) are associated with human obesity. Diabetes 58:2119–2128PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Fazzari MJ, Greally JM (2004) Epigenomics: beyond CpG islands. Nat Rev Genet 5:446–455PubMedCrossRefGoogle Scholar
  35. 35.
    Kralisch S, Klein J, Lossner U et al (2005) Interleukin-6 is a negative regulator of visfatin gene expression in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 289:E586–E590PubMedCrossRefGoogle Scholar
  36. 36.
    Barres R, Osler ME, Yan J et al (2009) Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 10:189–198PubMedCrossRefGoogle Scholar
  37. 37.
    Yang BT, Dayeh TA, Volkov PA et al (2012) Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 26:1203–1212PubMedCrossRefGoogle Scholar
  38. 38.
    Pilsner JR, Lazarus AL, Nam DH et al (2010) Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. Mol Ecol 19:307–314PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Maria Keller
    • 1
  • Susan Kralisch
    • 1
    • 2
  • Kerstin Rohde
    • 1
  • Dorit Schleinitz
    • 1
  • Arne Dietrich
    • 1
    • 3
  • Michael R. Schön
    • 4
  • Daniel Gärtner
    • 4
  • Tobias Lohmann
    • 5
  • Miriam Dreßler
    • 5
  • Anke Tönjes
    • 2
  • Michael Stumvoll
    • 1
    • 2
  • Peter Kovacs
    • 1
  • Mathias Fasshauer
    • 1
    • 2
  • Matthias Blüher
    • 2
  • Yvonne Böttcher
    • 1
  1. 1.Medical Faculty, IFB Adiposity DiseasesUniversity of LeipzigLeipzigGermany
  2. 2.Department of MedicineUniversity of LeipzigLeipzigGermany
  3. 3.Department of SurgeryUniversity of LeipzigLeipzigGermany
  4. 4.Clinic of Visceral SurgeryStädtisches Klinikum KarlsruheKarlsruheGermany
  5. 5.Municipal Clinic Dresden-NeustadtDresdenGermany

Personalised recommendations