, Volume 57, Issue 10, pp 2019–2029 | Cite as

Mortality and morbidity in relation to changes in albuminuria, glucose status and systolic blood pressure: an analysis of the ONTARGET and TRANSCEND studies

  • Roland E. SchmiederEmail author
  • Rudolph Schutte
  • Helmut Schumacher
  • Michael Böhm
  • Giuseppe Mancia
  • Michael A. Weber
  • Matthew McQueen
  • Koon Teo
  • Salim Yusuf
  • on behalf of the ONTARGET/TRANSCEND investigators



Urinary albumin excretion is a strong predictor of cardiovascular disease. It is uncertain whether improvement from microalbuminuria or deterioration from normoalbuminuria over time in patients with differing changes in glucose and BP change their cardiovascular risk.


Data on mortality, cardiovascular and renal outcomes were analysed in 22,984 patients from two large parallel randomised clinical trials followed for 56 months. A central laboratory analysed first morning spot urine samples at baseline and after 24 months, and events were recorded over the subsequent 32 months. Patients were stratified by changes in albuminuria, glucose status and mean systolic BP over 2 years.


There was a strong association between albuminuria status and all-cause and cardiovascular mortality and combined cardiovascular and renal endpoints (all p < 0.0001). Changes in systolic BP control had no effect on mortality, whereas glucose status was significantly associated with all outcomes. Irrespective of BP control or glucose status, patients showing an improvement from microalbuminuria to normoalbuminuria after 2 years were at a lower risk of all outcome measures than patients showing deterioration from normoalbuminuria to microalbuminuria (HR for all-cause mortality 0.65 [0.52–0.83], p = 0.0004).


Patients who showed improvement to normoalbuminuria over 2 years were at lower risk of all-cause and cardiovascular mortality and of cardiovascular and renal events than those who deteriorated to microalbuminuria over time. Albuminuria over time was significantly better than glucose status and BP control in predicting mortality and both cardiovascular and renal outcomes in patients at a high cardiovascular risk.


Albuminuria Cardiovascular disease Change Prognosis 



Estimated GFR


Fasting plasma glucose


ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial


The Telmisartan Randomised AssessmeNt Study in ACE iNtolerant participants with cardiovascular Disease


Urinary albumin/creatinine ratio



Funding for this research was provided by Boehringer Ingelheim.

Duality of interest statement

RES, MB, GM, MAW, KT and SY report receiving consulting and lecture fees and research grants from Boehringer Ingelheim and from other companies manufacturing angiotensin receptor blockers, ACE inhibitors and other BP-lowering drugs; HS is an employee of Boehringer Ingelheim. All other authors declare no conflict of interest.

Contribution statement

All authors substantially contributed to the conception and design of the manuscript, acquisition and interpretation of data and approved the final version. The analysis was planned by RES, HS, MB, KT and SY; data were analysed by HS. MM was responsible for the laboratory analysis and made critical revisions. RES, RS and HS drafted the article; and MB, GM, MAW, KT and SY critically revised it for important intellectual content.

All authors had full access to the data. No medical writer or other people were involved in the design, analysis or writing of this manuscript. A full list of all investigators has been published [22]. RES is guarantor of this work.

Supplementary material

125_2014_3330_MOESM1_ESM.pdf (40 kb)
ESM Fig. 1 (PDF 40 kb)
125_2014_3330_MOESM2_ESM.pdf (91 kb)
ESM Table 1 (PDF 90 kb)


  1. 1.
    Orasanu G, Plutzky J (2009) The pathologic continuum of diabetic vascular disease. J Am Coll Cardiol 53:S35–S42PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Laing SP, Swerdlow AJ, Slater SD et al (2003) Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia 46:760–765PubMedCrossRefGoogle Scholar
  3. 3.
    Matheus AS, Tannus LR, Cobas RA, Palma CC, Negrato CA, Gomes MB (2013) Impact of diabetes on cardiovascular disease: an update. Int J Hypertens 2013:653789PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Fox CS, Coady S, Sorlie PD et al (2004) Trends in cardiovascular complications of diabetes. JAMA 292:2495–2499PubMedCrossRefGoogle Scholar
  5. 5.
    Stehouwer CD, Nauta JJ, Zeldenrust GC, Hackeng WH, Donker AJ, den Ottolander GJ (1992) Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus. Lancet 340:319–323PubMedCrossRefGoogle Scholar
  6. 6.
    Ninomiya T, Perkovic V, de Galan BE et al (2009) Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol 20:1813–1821PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Targher G, Zoppini G, Chonchol M et al (2011) Glomerular filtration rate, albuminuria and risk of cardiovascular and all-cause mortality in type 2 diabetic individuals. Nutr Metab Cardiovasc Dis 21:294–301PubMedGoogle Scholar
  8. 8.
    Sarnak MJ, Astor BC (2011) Implications of proteinuria: CKD progression and cardiovascular outcomes. Adv Chronic Kidney Dis 18:258–266PubMedCrossRefGoogle Scholar
  9. 9.
    Astor BC, Matsushita K, Gansevoort RT et al (2011) Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int 79:1331–1340PubMedCrossRefGoogle Scholar
  10. 10.
    Ibsen H, Olsen MH, Wachtell K, Borch-Johnsen K, Lindholm LH, Mogensen CE (2008) Reduction in albuminuria translates to reduction in cardiovascular events in hypertensive patients with left ventricular hypertrophy and diabetes. J Nephrol 21:566–569PubMedGoogle Scholar
  11. 11.
    Schrader J, Lüders S, Kulschewski A, MARPLE Study Group et al (2006) Microalbuminuria and tubular proteinuria as risk predictors of cardiovascular morbidity and mortality in essential hypertension: final results of a prospective long-term study (MARPLE Study). J Hypertens 24:541–548PubMedCrossRefGoogle Scholar
  12. 12.
    Usui T, Ninomiya T, Nagata M, Doi Y, Hata J, Fukuhara M, Kiyohara Y (2011) Albuminuria as a risk factor for peripheral arterial disease in a general population: the Hisayama study. J Atheroscler Thromb 18:705–712PubMedCrossRefGoogle Scholar
  13. 13.
    Vlek AL, van der Graaf Y, Spiering W, Algra A, Visseren FL (2008) Cardiovascular events and all-cause mortality by albuminuria and decreased glomerular filtration rate in patients with vascular disease. J Intern Med 264:351–360PubMedCrossRefGoogle Scholar
  14. 14.
    Hillege HL, Fidler V, Diercks GF, Prevention of Renal and Vascular End Stage Disease (PREVEND) Study Group et al (2002) Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 106:1777–1782PubMedCrossRefGoogle Scholar
  15. 15.
    Konta T, Kudo K, Sato H et al (2013) Albuminuria is an independent predictor of all-cause and cardiovascular mortality in the Japanese population: the Takahata study. Clin Exp Nephrol 17:805–810PubMedCrossRefGoogle Scholar
  16. 16.
    Schmieder RE, Mann JF, Schumacher H et al (2011) Changes in albuminuria predict mortality and morbidity in patients with vascular disease. J Am Soc Nephrol 22:1353–1364PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Spoelstra-de Man AM, Brouwer CB, Stehouwer CD, Smulders YM (2001) Rapid progression of albumin excretion is an independent predictor of cardiovascular mortality in patients with type 2 diabetes and microalbuminuria. Diabetes Care 24:2097–2101PubMedCrossRefGoogle Scholar
  18. 18.
    Yuyun MF, Dinneen SF, Edwards OM, Wood E, Wareham NJ (2003) Absolute level and rate of change of albuminuria over 1 year independently predict mortality and cardiovascular events in patients with diabetic nephropathy. Diabet Med 20:277–282PubMedCrossRefGoogle Scholar
  19. 19.
    Zandbergen AA, Vogt L, de Zeeuw D et al (2007) Change in albuminuria is predictive of cardiovascular outcome in normotensive patients with type 2 diabetes and microalbuminuria. Diabetes Care 30:3119–3121PubMedCrossRefGoogle Scholar
  20. 20.
    Estacio RO, Dale RA, Schrier R, Krantz MJ (2012) Relation of reduction in urinary albumin excretion to ten-year cardiovascular mortality in patients with type 2 diabetes and systemic hypertension. Am J Cardiol 109:1743–1748PubMedCrossRefGoogle Scholar
  21. 21.
    De Zeeuw D, Remuzzi G, Parving HH et al (2004) Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation 110:921–927PubMedCrossRefGoogle Scholar
  22. 22.
    Teo K, Yusuf S, Sleight P et al (2004) Rationale, design, and baseline characteristics of 2 large, simple, randomized trials evaluating telmisartan, ramipril, and their combination in high-risk patients: the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial/Telmisartan Randomized Assessment Study in ACE Intolerant Subjects with Cardiovascular Disease (ONTARGET/TRANSCEND) trials. Am Heart J 148:52–61PubMedCrossRefGoogle Scholar
  23. 23.
    Yusuf S, Teo K, Anderson C et al (2008) Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet 372:1174–1183PubMedCrossRefGoogle Scholar
  24. 24.
    Yusuf S, Teo KK, Pogue J et al (2008) Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 358:1547–1559PubMedCrossRefGoogle Scholar
  25. 25.
    Barzilay JI, Gao P, Ryden L et al (2011) Effects of telmisartan on glucose levels in people at high risk for cardiovascular disease but free from diabetes: the TRANSCEND study. Diabetes Care 34:1902–1907PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Mann JF, Schmieder RE, McQueen M et al (2008) Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372:547–553PubMedCrossRefGoogle Scholar
  27. 27.
    Levey AS, Stevens LA, Schmid CH, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Vuong QH (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57:307–333CrossRefGoogle Scholar
  29. 29.
    Schmieder RE, Schrader J, Zidek W et al (2007) Low-grade albuminuria and cardiovascular risk: what is the evidence? Clin Res Cardiol 96:247–257PubMedCrossRefGoogle Scholar
  30. 30.
    Klausen K, Borch-Johnsen K, Feldt-Rasmussen B et al (2004) Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation 110:32–35PubMedCrossRefGoogle Scholar
  31. 31.
    Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:145–153PubMedCrossRefGoogle Scholar
  32. 32.
    The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 288:2981–2997CrossRefGoogle Scholar
  33. 33.
    Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321PubMedCrossRefGoogle Scholar
  34. 34.
    Redon J, Mancia G, Sleight P et al (2012) Safety and efficacy of low blood pressures among patients with diabetes: subgroup analyses from the ONTARGET (ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial). J Am Coll Cardiol 59:74–83PubMedCrossRefGoogle Scholar
  35. 35.
    Danaei G, Singh GM, Paciorek CJ et al (2013) The global cardiovascular risk transition: associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008. Circulation 127:1493–1498PubMedCrossRefGoogle Scholar
  36. 36.
    Meigs JB (2010) Epidemiology of type 2 diabetes and cardiovascular disease: translation from population to prevention: the Kelly West award lecture 2009. Diabetes Care 33:1865–1871PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Stehouwer CD, Smulders YM (2006) Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J Am Soc Nephrol 17:2106–2111PubMedCrossRefGoogle Scholar
  38. 38.
    Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A (1989) Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 32:219–226PubMedCrossRefGoogle Scholar
  39. 39.
    Viberti G, Wheeldon NM (2002) Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. Circulation 106:672–678PubMedCrossRefGoogle Scholar
  40. 40.
    Blacklock CL, Hirst JA, Taylor KS, Stevens RJ, Roberts NW, Farmer AJ (2011) Evidence for a dose effect of renin-angiotensin system inhibition on progression of microalbuminuria in type 2 diabetes: a meta-analysis. Diabet Med 28:1182–1187PubMedCrossRefGoogle Scholar
  41. 41.
    Mancia G, Fagard R, Narkiewicz K et al (2013) 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 31:1281–1357PubMedCrossRefGoogle Scholar
  42. 42.
    Gansevoort RT, Verhave JC, Hillege HL et al; PREVEND Study Group (2005) The validity of screening based on spot morning urine samples to detect subjects with microalbuminuria in the general population. Kidney Int Suppl:S28–S35Google Scholar
  43. 43.
    Viana LV, Gross JL, Camargo JL, Zelmanovitz T, da Costa Rocha EP, Azevedo MJ (2012) Prediction of cardiovascular events, diabetic nephropathy, and mortality by albumin concentration in a spot urine sample in patients with type 2 diabetes. J Diabetes Complicat 26:407–412PubMedCrossRefGoogle Scholar
  44. 44.
    Justesen TI, Petersen JL, Ekbom P, Damm P, Mathiesen ER (2006) Albumin-to-creatinine ratio in random urine samples might replace 24-h urine collections in screening for micro- and macroalbuminuria in pregnant woman with type 1 diabetes. Diabetes Care 29:924–925PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Roland E. Schmieder
    • 1
    Email author
  • Rudolph Schutte
    • 2
  • Helmut Schumacher
    • 3
  • Michael Böhm
    • 4
  • Giuseppe Mancia
    • 5
  • Michael A. Weber
    • 6
  • Matthew McQueen
    • 7
  • Koon Teo
    • 7
  • Salim Yusuf
    • 7
  • on behalf of the ONTARGET/TRANSCEND investigators
  1. 1.Department of Nephrology and HypertensionUniversity Hospital of the University Erlangen-NurembergErlangenGermany
  2. 2.Hypertension in Africa Research TeamNorth-West UniversityPotchefstroomSouth Africa
  3. 3.Boehringer IngelheimIngelheimGermany
  4. 4.Medizinische Fakultät der Universität des SaarlandesUniversitätsklinikum des Saarlandes (UKS)HomburgGermany
  5. 5.Clinica MedicaUniversity of Milan-Bicoca, S. Gerardo HospitalMonzaItaly
  6. 6.Cardiology DivisionState University of New York Downstate College of MedicineBrooklynUSA
  7. 7.Population Health Research InstituteMcMaster UniversityHamiltonCanada

Personalised recommendations