Advertisement

Diabetologia

, Volume 57, Issue 10, pp 2173–2182 | Cite as

DOC2 isoforms play dual roles in insulin secretion and insulin-stimulated glucose uptake

  • Jia Li
  • James Cantley
  • James G. Burchfield
  • Christopher C. Meoli
  • Jacqueline Stöckli
  • P. Tess Whitworth
  • Himani Pant
  • Rima Chaudhuri
  • Alexander J. A. Groffen
  • Matthijs Verhage
  • David E. JamesEmail author
Article

Abstract

Aims/hypothesis

Glucose-stimulated insulin secretion (GSIS) and insulin-stimulated glucose uptake are processes that rely on regulated intracellular vesicle transport and vesicle fusion with the plasma membrane. DOC2A and DOC2B are calcium-sensitive proteins that were identified as key components of vesicle exocytosis in neurons. Our aim was to investigate the role of DOC2 isoforms in glucose homeostasis, insulin secretion and insulin action.

Methods

DOC2 expression was measured by RT-PCR and western blotting. Body weight, glucose tolerance, insulin action and GSIS were assessed in wild-type (WT), Doc2a −/− (Doc2aKO), Doc2b −/− (Doc2bKO) and Doc2a −/−/Doc2b −/− (Doc2a/Doc2bKO) mice in vivo. In vitro GSIS and glucose uptake were assessed in isolated tissues, and exocytotic proteins measured by western blotting. GLUT4 translocation was assessed by epifluorescence microscopy.

Results

Doc2b mRNA was detected in all tissues tested, whereas Doc2a was only detected in islets and the brain. Doc2aKO and Doc2bKO mice had minor glucose intolerance, while Doc2a/Doc2bKO mice showed pronounced glucose intolerance. GSIS was markedly impaired in Doc2a/Doc2bKO mice in vivo, and in isolated Doc2a/Doc2bKO islets in vitro. In contrast, Doc2bKO mice had only subtle defects in insulin secretion in vivo. Insulin action was impaired to a similar degree in both Doc2bKO and Doc2a/Doc2bKO mice. In vitro insulin-stimulated glucose transport and GLUT4 vesicle fusion were defective in adipocytes derived from Doc2bKO mice. Surprisingly, insulin action was not altered in muscle isolated from DOC2-null mice.

Conclusions/interpretation

Our study identifies a critical role for DOC2B in insulin-stimulated glucose uptake in adipocytes, and for the synergistic regulation of GSIS by DOC2A and DOC2B in beta cells.

Keywords

Adipocyte Beta cell Diabetes DOC2 Double C2 domain protein Exocytosis Glucose homeostasis GLUT4 Insulin action Insulin secretion 

Abbreviations

DOC2

Double C2 domain protein

Doc2aKO

Doc2a −/−

Doc2bKO

Doc2b −/−

DXA

Dual-energy x-ray absorptiometry

GSIS

Glucose-stimulated insulin secretion

ITT

Insulin tolerance test

[Ca2+]i

Intracellular calcium

MEFs

Mouse embryonic fibroblasts

PM

Plasma membrane

SNARE

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

WT

Wild-type

Notes

Acknowledgements

We thank T. Südhof (Stanford University, CA, USA) for providing antibodies. We thank M. van de Bunt and A. Gloyn (University of Oxford, UK) for assistance with RNA-seq data analysis.

Funding

This work was supported by a National Health and Medical Research Council of Australia (NHMRC) program grant (DEJ) and project grant (JC), and by the Chinese Scholarship Council (JL). DEJ is an NHMRC Senior Principal Research Fellow.

Duality of interest

The authors declare they have no duality of interest associated with this manuscript.

Contribution statement

DEJ conceived the studies. JC wrote the manuscript, with critical input from all authors. DEJ, JC, JL, JGB and JS designed experiments and interpreted data. JC, JL, JGB, JS, CCM, PTW, HP and RC designed experiments, and acquired and analysed data. MV and AJAG contributed to the acquisition and interpretation of data. All authors approved the final manuscript. DEJ is the guarantor of this work.

Supplementary material

125_2014_3312_MOESM1_ESM.pdf (274 kb)
ESM Methods (PDF 273 kb)
125_2014_3312_MOESM2_ESM.xls (31.2 mb)
ESM Data file (XLS 31,905 kb)

References

  1. 1.
    Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46:3–19PubMedCrossRefGoogle Scholar
  2. 2.
    Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the beta cell: the last ten years. Cell 148:1160–1171PubMedCrossRefGoogle Scholar
  3. 3.
    Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83:581–632PubMedGoogle Scholar
  4. 4.
    Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207PubMedCrossRefGoogle Scholar
  5. 5.
    Jewell JL, Oh E, Thurmond DC (2010) Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4. Am J Physiol Regul Integr Comp Physiol 298:R517–R531PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Stöckli J, Fazakerley DJ, James DE (2011) GLUT4 exocytosis. J Cell Sci 124:4147–4159PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Whitehead JP, Molero JC, Clark S, Martin S, Meneilly G, James DE (2001) The role of Ca2+ in insulin-stimulated glucose transport in 3T3-L1 cells. J Biol Chem 276:27816–27824PubMedCrossRefGoogle Scholar
  8. 8.
    Lanner JT, Bruton JD, Katz A, Westerblad H (2008) Ca(2+) and insulin-mediated glucose uptake. Curr Opin Pharmacol 8:339–345PubMedCrossRefGoogle Scholar
  9. 9.
    Orita S, Sasaki T, Naito A et al (1995) Doc2: a novel brain protein having two repeated C2-like domains. Biochem Biophys Res Commun 206:439–448PubMedCrossRefGoogle Scholar
  10. 10.
    Sakaguchi G, Orita S, Maeda M, Igarashi H, Takai Y (1995) Molecular cloning of an isoform of Doc2 having two C2-like domains. Biochem Biophys Res Commun 217:1053–1061PubMedCrossRefGoogle Scholar
  11. 11.
    Kojima T, Fukuda M, Aruga J, Mikoshiba K (1996) Calcium-dependent phospholipid binding to the C2A domain of a ubiquitous form of double C2 protein (Doc2 beta). J Biochem 120:671–676PubMedCrossRefGoogle Scholar
  12. 12.
    Verhage M, de Vries KJ, Roshol H, Burbach JP, Gispen WH, Sudhof TC (1997) DOC2 proteins in rat brain: complementary distribution and proposed function as vesicular adapter proteins in early stages of secretion. Neuron 18:453–461PubMedCrossRefGoogle Scholar
  13. 13.
    Groffen AJ, Martens S, Diez Arazola R et al (2010) Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science 327:1614–1618PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Fukuda M, Mikoshiba K (2000) Doc2gamma, a third isoform of double C2 protein, lacking calcium-dependent phospholipid binding activity. Biochem Biophys Res Commun 276:626–632PubMedCrossRefGoogle Scholar
  15. 15.
    Groffen AJ, Friedrich R, Brian EC, Ashery U, Verhage M (2006) DOC2A and DOC2B are sensors for neuronal activity with unique calcium-dependent and kinetic properties. J Neurochem 97:818–833PubMedCrossRefGoogle Scholar
  16. 16.
    Friedrich R, Groffen AJ, Connell E et al (2008) DOC2B acts as a calcium switch and enhances vesicle fusion. J Neurosci Off J Soc Neurosci 28:6794–6806CrossRefGoogle Scholar
  17. 17.
    Berghs CA, Korteweg N, Bouteiller A et al (1999) Co-expression in Xenopus neurons and neuroendocrine cells of messenger RNA homologues of exocytosis proteins DOC2 and munc18–1. Neuroscience 92:763–772PubMedCrossRefGoogle Scholar
  18. 18.
    Ke B, Oh E, Thurmond DC (2007) Doc2beta is a novel Munc18c-interacting partner and positive effector of syntaxin 4-mediated exocytosis. J Biol Chem 282:21786–21797PubMedCrossRefGoogle Scholar
  19. 19.
    Orita S, Naito A, Sakaguchi G et al (1997) Physical and functional interactions of Doc2 and Munc13 in Ca2+-dependent exocytotic machinery. J Biol Chem 272:16081–16084PubMedCrossRefGoogle Scholar
  20. 20.
    Mochida S, Orita S, Sakaguchi G, Sasaki T, Takai Y (1998) Role of the Doc2 alpha-Munc13-1 interaction in the neurotransmitter release process. Proc Natl Acad Sci U S A 95:11418–11422PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Duncan RR, Betz A, Shipston MJ, Brose N, Chow RH (1999) Transient, phorbol ester-induced DOC2-Munc13 interactions in vivo. J Biol Chem 274:27347–27350PubMedCrossRefGoogle Scholar
  22. 22.
    Nagano F, Orita S, Sasaki T et al (1998) Interaction of Doc2 with tctex-1, a light chain of cytoplasmic dynein. Implication in dynein-dependent vesicle transport. J Biol Chem 273:30065–30068PubMedCrossRefGoogle Scholar
  23. 23.
    Sato M, Mori Y, Matsui T et al (2010) Role of the polybasic sequence in the Doc2alpha C2B domain in dense-core vesicle exocytosis in PC12 cells. J Neurochem 114:171–181PubMedGoogle Scholar
  24. 24.
    Miyazaki M, Emoto M, Fukuda N et al (2009) DOC2b is a SNARE regulator of glucose-stimulated delayed insulin secretion. Biochem Biophys Res Commun 384:461–465PubMedCrossRefGoogle Scholar
  25. 25.
    Fukuda N, Emoto M, Nakamori Y et al (2009) DOC2B: a novel syntaxin-4 binding protein mediating insulin-regulated GLUT4 vesicle fusion in adipocytes. Diabetes 58:377–384PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Yu H, Rathore SS, Davis EM, Ouyang Y, Shen J (2013) Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending-dependent manner. Mol Biol Cell 24:1176–1184PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Ramalingam L, Oh E, Yoder SM et al (2012) Doc2b is a key effector of insulin secretion and skeletal muscle insulin sensitivity. Diabetes 61:2424–2432PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Sakaguchi G, Manabe T, Kobayashi K et al (1999) Doc2alpha is an activity-dependent modulator of excitatory synaptic transmission. Eur J Neurosci 11:4262–4268PubMedCrossRefGoogle Scholar
  29. 29.
    Cantley J, Boslem E, Laybutt DR et al (2011) Deletion of protein kinase C delta in mice modulates stability of inflammatory genes and protects against cytokine-stimulated beta cell death in vitro and in vivo. Diabetologia 54:380–389PubMedCrossRefGoogle Scholar
  30. 30.
    Cantley J, Choudhury AI, Asare-Anane H et al (2007) Pancreatic deletion of insulin receptor substrate 2 reduces beta and alpha cell mass and impairs glucose homeostasis in mice. Diabetologia 50:1248–1256PubMedCrossRefGoogle Scholar
  31. 31.
    Sommer C, Straehle C, Koethe U, Hamprecht FA (2011) ilastik: Interactive Learning and Segmentation Toolkit. 8th IEEE International Symposium on Biomedical Imaging: 230–233Google Scholar
  32. 32.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to Image J: 25 years of image analysis. Nat Methods 9:671–675PubMedCrossRefGoogle Scholar
  33. 33.
    Zhao P, Yang L, Lopez JA et al (2009) Variations in the requirement for v-SNAREs in GLUT4 trafficking in adipocytes. J Cell Sci 122:3472–3480PubMedCrossRefGoogle Scholar
  34. 34.
    Burchfield JG, Lu J, Fazakerley DJ et al (2013) Novel systems for dynamically assessing insulin action in live cells reveals heterogeneity in the insulin response. Traffic 14:259–273PubMedCrossRefGoogle Scholar
  35. 35.
    Nica AC, Ongen H, Irminger J-C et al (2013) Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res 23:1554–1562PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Marselli L, Thorne J, Dahiya S et al (2010) Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 5:e11499PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Li H, Heilbronn LK, Hu D et al (2008) Islet-1: a potentially important role for an islet cell gene in visceral fat. Obesity (Silver Spring) 16:356–362CrossRefGoogle Scholar
  38. 38.
    Cantley J, Burchfield JG, Pearson GL, Schmitz-Peiffer C, Leitges M, Biden TJ (2009) Deletion of PKCepsilon selectively enhances the amplifying pathways of glucose-stimulated insulin secretion via increased lipolysis in mouse beta-cells. Diabetes 58:1826–1834PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Valenti G, Procino G, Tamma G, Carmosino M, Svelto M (2005) Minireview: aquaporin 2 trafficking. Endocrinology 146:5063–5070PubMedCrossRefGoogle Scholar
  40. 40.
    Butterworth MB, Edinger RS, Frizzell RA, Johnson JP (2008) Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 296:F10–F24Google Scholar
  41. 41.
    Gustavsson N, Lao Y, Maximov A et al (2008) Impaired insulin secretion and glucose intolerance in synaptotagmin-7-null mutant mice. Proc Natl Acad Sci U S A 105:3992–3997PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Gustavsson N, Wang X, Wang Y et al (2010) Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion. PLoS One 5:e15414PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Beauvois MC, Merezak C, Jonas J-C, Ravier MA, Henquin J-C, Gilon P (2006) Glucose-induced mixed [Ca2+]c oscillations in mouse beta-cells are controlled by the membrane potential and the SERCA3 Ca2+-ATPase of the endoplasmic reticulum. Am J Physiol Cell Physiol 290:C1503–C1511PubMedCrossRefGoogle Scholar
  44. 44.
    Dyachok O, Idevall-Hagren O, Sågetorp J et al (2008) Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 8:26–37Google Scholar
  45. 45.
    Wuttke A, Idevall-Hagren O, Tengholm A (2013) P2Y(1) receptor-dependent diacylglycerol signaling microdomains in beta cells promote insulin secretion. FASEB J 27:1610–1620Google Scholar
  46. 46.
    Sheu L, Pasyk EA, Ji J et al (2003) Regulation of insulin exocytosis by Munc13-1. J Biol Chem 278:27556–27563PubMedCrossRefGoogle Scholar
  47. 47.
    Kwan EP, Xie L, Sheu L et al (2006) Munc13-1 deficiency reduces insulin secretion and causes abnormal glucose tolerance. Diabetes 55:1421–1429PubMedCrossRefGoogle Scholar
  48. 48.
    Kang L, He Z, Xu P et al (2006) Munc13-1 is required for the sustained release of insulin from pancreatic β cells. Cell Metab 3:463–468PubMedCrossRefGoogle Scholar
  49. 49.
    Bruton JD, Katz A, Westerblad H (1999) Insulin increases near-membrane but not global Ca2+ in isolated skeletal muscle. Proc Natl Acad Sci U S A 96:3281–3286PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jia Li
    • 1
    • 2
  • James Cantley
    • 1
    • 3
    • 4
  • James G. Burchfield
    • 1
  • Christopher C. Meoli
    • 1
  • Jacqueline Stöckli
    • 1
    • 4
  • P. Tess Whitworth
    • 1
  • Himani Pant
    • 1
  • Rima Chaudhuri
    • 1
  • Alexander J. A. Groffen
    • 5
  • Matthijs Verhage
    • 5
  • David E. James
    • 1
    • 6
    Email author
  1. 1.Diabetes and Obesity Research ProgramGarvan Institute of Medical ResearchDarlinghurstAustralia
  2. 2.Department of PhysiologyFourth Military Medical UniversityXi’anPeople’s Republic of China
  3. 3.Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
  4. 4.St. Vincent’s Clinical School, Faculty of MedicineUniversity of New South WalesDarlinghurstAustralia
  5. 5.Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus AmsterdamVU University and VU Medical CenterAmsterdamthe Netherlands
  6. 6.The Charles Perkins Centre, School of Molecular Biosciences, School of MedicineUniversity of SydneySydneyAustralia

Personalised recommendations