Skip to main content

Advertisement

Log in

A serum 25-hydroxyvitamin D concentration-associated genetic variant in DHCR7 interacts with type 2 diabetes status to influence subclinical atherosclerosis (measured by carotid intima–media thickness)

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

The findings of studies investigating whether or not low serum 25-hydroxyvitamin D [25(OH)D] concentration promotes development of atherosclerosis have been contradictory. The present study employed a Mendelian randomisation approach and carotid artery intima–media thickness (cIMT), a surrogate marker of coronary artery disease, to address this question.

Methods

The multicentre, longitudinal Carotid Intima–Media Thickness and IMT-Progression as Predictors of Vascular Events in a High-Risk European Population (IMPROVE) cohort study, which enrolled individuals with at least three cardiovascular risk factors and no history or symptoms of cardiovascular disease, was used for the present investigation. Participants underwent carotid ultrasound examination at baseline and at months 15 and 30. Six single nucleotide polymorphisms (SNPs) associated with serum 25(OH)D concentration in genome-wide association studies were identified and genotyped in 3,418 individuals, of whom 929 had type 2 diabetes.

Results

SNPs in the genes encoding vitamin D binding protein (GC; rs2282679 and rs7041) and 7-dehydrocholesterol reductase/NAD synthetase-1 (DHCR7; rs12785878 and rs3829251) were negatively associated with 25(OH)D levels. Effect sizes and significance of associations between SNPs and 25(OH)D levels differed between individuals with and without type 2 diabetes, although no significant interactions were observed. A SNP in DHCR7 interacted with type 2 diabetes to significantly influence progression of cIMT measures independent of 25(OH)D levels and established risk factors. Expression analysis demonstrated that this SNP modulates DHCR7 mRNA levels in aortic adventitia.

Conclusions/interpretation

SNPs in GC and DHCR7 were associated with serum levels of 25(OH)D, but only rs3829251 (DHCR7) influenced progression of subclinical atherosclerosis, as measured by cIMT, in a manner dependent on type 2 diabetes status but independent of 25(OH)D levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

1,25(OH)D:

1,25-Dihydroxyvitamin D

25(OH)D:

25-Hydroxyvitamin D

ASAP:

Advanced Study of Aortic Pathology

Bifmax :

Maximum intima–media thickness of the bifurcation

Bifmean :

Mean intima–media thickness of the bifurcation

CCmax :

Maximum intima–media thickness of the common carotid artery

CCmean :

Mean intima–media thickness of the common carotid artery

cIMT:

Carotid intima–media thickness

CRP:

C-reactive protein

CVD:

Cardiovascular disease

IMPROVE:

Carotid Intima–Media Thickness and IMT-Progression as Predictors of Vascular Events in a High-Risk European Population

IMTmax :

Maximum intima–media thickness of the entire carotid tree

IMTmean :

Mean intima–media thickness of the entire carotid tree

IMTmean-max :

Mean of the IMTmax

SNPs:

Single nucleotide polymorphisms

VDR:

Vitamin D receptor

References

  1. Forouhi NG, Ye Z, Rickard AP et al (2012) Circulating 25-hydroxyvitamin D concentration and the risk of type 2 diabetes: results from the European Prospective Investigation into Cancer (EPIC)-Norfolk cohort and updated meta-analysis of prospective studies. Diabetologia 55:2173–2182

    Article  CAS  PubMed  Google Scholar 

  2. Grandi NC, Breitling LP, Brenner H (2010) Vitamin D and cardiovascular disease: systematic review and meta-analysis of prospective studies. Prev Med 51:228–233

    Article  CAS  PubMed  Google Scholar 

  3. Baz-Hecht M, Goldfine AB (2010) The impact of vitamin D deficiency on diabetes and cardiovascular risk. Curr Opin Endocrinol Diabetes Obes 17:113–119

    Article  CAS  PubMed  Google Scholar 

  4. Nagpal S, Na S, Rathnachalam R (2005) Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 26:662–687

    Article  CAS  PubMed  Google Scholar 

  5. Zittermann A, Schleithoff SS, Koerfer R (2005) Putting cardiovascular disease and vitamin D insufficiency into perspective. Br J Nutr 94:483–492

    Article  CAS  PubMed  Google Scholar 

  6. Mathieu C, Gysemans C, Giulietti A, Bouillon R (2005) Vitamin D and diabetes. Diabetologia 48:1247–1257

    Article  CAS  PubMed  Google Scholar 

  7. Pilz S, Tomaschitz A, Ritz E, Pieber TR (2009) Vitamin D status and arterial hypertension: a systematic review. Nat Rev Cardiol 6:621–630

    Article  CAS  PubMed  Google Scholar 

  8. Pilz S, Tomaschitz A, Marz W et al (2011) Vitamin D, cardiovascular disease and mortality. Clin Endocrinol 75:575–584

    Article  CAS  Google Scholar 

  9. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  CAS  PubMed  Google Scholar 

  10. Berry D, Hypponen E (2011) Determinants of vitamin D status: focus on genetic variations. Curr Opin Nephrol Hypertens 20:331–336

    Article  CAS  PubMed  Google Scholar 

  11. Wang TJ, Zhang F, Richards JB et al (2010) Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376:180–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ahn J, Yu K, Stolzenberg-Solomon R et al (2010) Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 19:2739–2745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. McGrath JJ, Saha S, Burne TH, Eyles DW (2010) A systematic review of the association between common single nucleotide polymorphisms and 25-hydroxyvitamin D concentrations. J Steroid Biochem Mol Biol 121:471–477

    Article  CAS  PubMed  Google Scholar 

  14. Hunter D, de Lange M, Snieder H et al (2001) Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. J Bone Miner Res Off J Am Soc Bone Miner Res 16:371–378

    Article  CAS  Google Scholar 

  15. Shea MK, Benjamin EJ, Dupuis J et al (2009) Genetic and non-genetic correlates of vitamins K and D. Eur J Clin Nutr 63:458–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Amato M, Montorsi P, Ravani A et al (2007) Carotid intima-media thickness by B-mode ultrasound as surrogate of coronary atherosclerosis: correlation with quantitative coronary angiography and coronary intravascular ultrasound findings. Eur Heart J 28:2094–2101

    Article  PubMed  Google Scholar 

  17. O'Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr (1999) Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 340:14–22

    Article  PubMed  Google Scholar 

  18. Chambless LE, Heiss G, Folsom AR et al (1997) Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol 146:483–494

    Article  CAS  PubMed  Google Scholar 

  19. Baldassarre D, Nyyssonen K, Rauramaa R et al (2010) Cross-sectional analysis of baseline data to identify the major determinants of carotid intima-media thickness in a European population: the IMPROVE study. Eur Heart J 31:614–622

    Article  PubMed  Google Scholar 

  20. Deleskog A, Piksasova O, Silveira A et al (2013) Serum 25-hydroxyvitamin D concentration in subclinical carotid atherosclerosis. Arterioscler Thromb Vasc Biol 33:2633–2638

    Article  CAS  PubMed  Google Scholar 

  21. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, de Grobbee (1997) Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation 96:1432–1437

    Article  CAS  PubMed  Google Scholar 

  22. Hofman A, van Duijn CM, Franco OH et al (2011) The Rotterdam Study: 2012 objectives and design update. Eur J Epidemiol 26:657–686

    Article  PubMed Central  PubMed  Google Scholar 

  23. Odink AE, van der Lugt A, Hofman A et al (2010) Risk factors for coronary, aortic arch and carotid calcification; the Rotterdam Study. J Hum Hypertens 24:86–92

    Article  CAS  PubMed  Google Scholar 

  24. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  PubMed  Google Scholar 

  25. Trynka G, Hunt KA, Bockett NA et al (2011) Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet 43:1193–1201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Folkersen L, van't Hooft F, Chernogubova E et al (2010) Association of genetic risk variants with expression of proximal genes identifies novel susceptibility genes for cardiovascular disease. Circ Cardiovasc Genet 3:365–373

    Article  CAS  PubMed  Google Scholar 

  28. Targher G, Bertolini L, Padovani R et al (2006) Serum 25-hydroxyvitamin D3 concentrations and carotid artery intima-media thickness among type 2 diabetic patients. Clin Endocrinol 65:593–597

    Article  CAS  Google Scholar 

  29. Reis JP, von Muhlen D, Michos ED et al (2009) Serum vitamin D, parathyroid hormone levels, and carotid atherosclerosis. Atherosclerosis 207:585–590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Michos ED, Streeten EA, Ryan KA et al (2009) Serum 25-hydroxyvitamin d levels are not associated with subclinical vascular disease or C-reactive protein in the old order amish. Calcif Tissue Int 84:195–202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Carrelli AL, Walker MD, Lowe H et al (2011) Vitamin D deficiency is associated with subclinical carotid atherosclerosis: the Northern Manhattan study. Stroke J Cereb Circ 42:2240–2245

    Article  CAS  Google Scholar 

  32. Bis JC, Kavousi M, Franceschini N et al (2011) Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque. Nat Genet 43:940–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Teslovich TM, Musunuru K, Smith AV et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Scragg R, Sowers M, Bell C, Third National H, Nutrition Examination S (2004) Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. Diabetes Care 27:2813–2818

    Article  CAS  PubMed  Google Scholar 

  35. Ford ES, Ajani UA, McGuire LC, Liu S (2005) Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabetes Care 28:1228–1230

    Article  CAS  PubMed  Google Scholar 

  36. Martins D, Wolf M, Pan D et al (2007) Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: data from the Third National Health and Nutrition Examination Survey. Arch Intern Med 167:1159–1165

    Article  CAS  PubMed  Google Scholar 

  37. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72:690–693

    CAS  PubMed  Google Scholar 

  38. Deleskog A, Hilding A, Brismar K, Hamsten A, Efendic S, Ostenson CG (2012) Low serum 25-hydroxyvitamin D level predicts progression to type 2 diabetes in individuals with prediabetes but not with normal glucose tolerance. Diabetologia 55:1668–1678

    Article  CAS  PubMed  Google Scholar 

  39. de Boer IH, Kestenbaum B, Shoben AB, Michos ED, Sarnak MJ, Siscovick DS (2009) 25-Hydroxyvitamin D levels inversely associate with risk for developing coronary artery calcification. J Am Soc Nephrol JASN 20:1805–1812

    Article  Google Scholar 

  40. Somjen D, Weisman Y, Kohen F et al (2005) 25-Hydroxyvitamin D3-1alpha-hydroxylase is expressed in human vascular smooth muscle cells and is upregulated by parathyroid hormone and estrogenic compounds. Circulation 111:1666–1671

    Article  CAS  PubMed  Google Scholar 

  41. Wu-Wong JR (2009) Potential for vitamin D receptor agonists in the treatment of cardiovascular disease. Br J Pharmacol 158:395–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Oh J, Weng S, Felton SK et al (2009) 1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation 120:687–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ohsawa M, Koyama T, Yamamoto K, Hirosawa S, Kamei S, Kamiyama R (2000) 1alpha,25-Dihydroxyvitamin D(3) and its potent synthetic analogs downregulate tissue factor and upregulate thrombomodulin expression in monocytic cells, counteracting the effects of tumor necrosis factor and oxidized LDL. Circulation 102:2867–2872

    Article  CAS  PubMed  Google Scholar 

  44. Richart T, Li Y, Staessen JA (2007) Renal versus extrarenal activation of vitamin D in relation to atherosclerosis, arterial stiffening, and hypertension. Am J Hypertens 20:1007–1015

    Article  CAS  PubMed  Google Scholar 

  45. Zittermann A, Schleithoff SS, Koerfer R (2007) Vitamin D and vascular calcification. Curr Opin Lipidol 18:41–46

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The IMPROVE study was supported by the European Commission (Contract number: QLG1-CT-2002-00896), Swedish Heart-Lung Foundation, Swedish Research Council (projects 8691 and 0593), Knut and Alice Wallenberg Foundation, Foundation for Strategic Research, Stockholm County Council (project 592229), Strategic Cardiovascular and Diabetes Programmes of Karolinska Institutet and Stockholm County Council, European Union Framework Programme 7 (FP7/2007-2013) for Innovative Medicine Initiative (no. IMI/115006 [the SUMMIT consortium]), Magnus Bergwall Foundation, Academy of Finland (grant no. 110413), British Heart Foundation (RG2008/08, RG2008/014) and the Italian Ministry of Health (Ricerca Corrente). The Rotterdam genome-wide association study was funded by the Netherlands Organisation of Scientific Research (NWO) Investments (no. 175.010.2005.011, 911-03-012), Research Institute for Diseases in the Elderly (RIDE; 014-93-015), the Netherlands Genomics Initiative (NGI)/Netherlands Consortium for Healthy Ageing (NCHA) project no. 050-060-810. The Rotterdam Study is funded by the Erasmus Medical Center and Erasmus University, Rotterdam, the Netherlands Organisation for the Health Research and Development (ZonMw), RIDE, Netherlands Heart Foundation, Ministry of Education, Culture, and Science, Ministry for Health, Welfare, and Sports, European Commission (DG XII), and the Municipality of Rotterdam. Maryam Kavousi is supported by the AXA Research Fund. Abbas Dehghan is supported by NWO grant (veni, 916.12.154) and EUR Fellowship. Oscar H. Franco works in ErasmusAGE, a centre funded by Nestlé Nutrition (Nestec Ltd.), Metagenics Inc. and AXA.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript. Nestlé Nutrition (Nestec Ltd.), Metagenics Inc. and AXA had no role in the design and conduct of the study, the collection, management, analysis and interpretation of the data, or in the preparation, review or approval of the manuscript.

Contribution

This study was conceived by AHa, SG and C-GÖ, designed by RJS, ADel and JÖ, and analysis was performed by RJS, ADel, LF, MK and JÖ. KL and BG contributed to interpretation of the data. Data acquisition was carried out by OM, KG, ADeh, AHo, OHF, the IMPROVE study group (DB, FV, JK, RR, AJS, EM, PG, SFH, ET, UdF), the Rotterdam Study group (ADeh, AHo, OHF) PE and AHa. RJS is responsible for the integrity of the work as a whole. All authors have contributed to drafting and critically revising the manuscript and have approved the final draft for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rona J. Strawbridge.

Additional information

Rona J. Strawbridge and Anna Deleskog contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

(PDF 11 kb)

ESM Table 2

(PDF 18 kb)

ESM Table 3

(PDF 158 kb)

ESM Table 4

(PDF 159 kb)

ESM Table 5

(PDF 93 kb)

ESM Table 6

(PDF 86 kb)

ESM Table 7

(PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strawbridge, R.J., Deleskog, A., McLeod, O. et al. A serum 25-hydroxyvitamin D concentration-associated genetic variant in DHCR7 interacts with type 2 diabetes status to influence subclinical atherosclerosis (measured by carotid intima–media thickness). Diabetologia 57, 1159–1172 (2014). https://doi.org/10.1007/s00125-014-3215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3215-y

Keywords

Navigation