Diabetologia

, Volume 57, Issue 5, pp 1047–1056 | Cite as

TIAM1–RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy

  • Renu A. Kowluru
  • Anjaneyulu Kowluru
  • Rajakrishnan Veluthakal
  • Ghulam Mohammad
  • Ismail Syed
  • Julia M. Santos
  • Manish Mishra
Article

Abstract

Aims/hypothesis

In diabetes, increased retinal oxidative stress is seen before the mitochondria are damaged. Phagocyte-like NADPH oxidase-2 (NOX2) is the predominant cytosolic source of reactive oxygen species (ROS). Activation of Ras-related C3 botulinum toxin substrate 1 (RAC1), a NOX2 holoenzyme member, is necessary for NOX2 activation and ROS generation. In this study we assessed the role of T cell lymphoma invasion and metastasis (TIAM1), a guanine nucleotide exchange factor for RAC1, in RAC1 and NOX2 activation and the onset of mitochondrial dysfunction in in vitro and in vivo models of glucotoxicity and diabetes.

Methods

RAC1 and NOX2 activation, ROS generation, mitochondrial damage and cell apoptosis were quantified in bovine retinal endothelial cells exposed to high glucose concentrations, in the retina from normal and streptozotocin-induced diabetic rats and mice, and the retina from human donors with diabetic retinopathy.

Results

High glucose activated RAC1 and NOX2 (expression and activity) and increased ROS in endothelial cells before increasing mitochondrial ROS and mitochondrial DNA (mtDNA) damage. N6-[2-[[4-(diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine, trihydrochloride (NSC23766), a known inhibitor of TIAM1–RAC1, markedly attenuated RAC1 activation, total and mitochondrial ROS, mtDNA damage and cell apoptosis. An increase in NOX2 expression and membrane association of RAC1 and p47phox were also seen in diabetic rat retina. Administration of NSC23766 to diabetic mice attenuated retinal RAC1 activation and ROS generation. RAC1 activation and p47phox expression were also increased in the retinal microvasculature from human donors with diabetic retinopathy.

Conclusions/interpretation

The TIAM1–RAC1–NOX2 signalling axis is activated in the initial stages of diabetes to increase intracellular ROS leading to mitochondrial damage and accelerated capillary cell apoptosis. Strategies targeting TIAM1–RAC1 signalling could have the potential to halt the progression of diabetic retinopathy in the early stages of the disease.

Keywords

Diabetic retinopathy Mitochondrial dysfunction NOX2 RAC1 TIAM1 

Abbreviations

BAX

BCL-2-associated X protein

DCHFDA

2′,7′-Dichlorodihydrofluorescein diacetate

GAPs

GTPase-activating proteins

GEFs

Guanine nucleotide exchange factors

mtDNA

Mitochondrial DNA

NOX

NADPH oxidase

qPCR

Quantitative real-time PCR

RAC1

Ras-related C3 botulinum toxin substrate 1

ROS

Reactive oxygen species

TIAM1

T cell lymphoma invasion and metastasis

Supplementary material

125_2014_3194_MOESM1_ESM.pdf (52 kb)
ESM 1(PDF 51 kb)

References

  1. 1.
    Frank RN (2004) Diabetic retinopathy. N Engl J Med 350:48–58PubMedCrossRefGoogle Scholar
  2. 2.
    Kowluru RA (2005) Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antiox Redox Signal 7:1581–1587CrossRefGoogle Scholar
  3. 3.
    Kowluru RA, Abbas SN (2003) Diabetes-induced mitochondrial dysfunction in the retina. Investig Ophthalmol Vis Sci 44:5327–5334CrossRefGoogle Scholar
  4. 4.
    Kowluru RA (2013) Mitochondria damage in the pathogenesis of diabetic retinopathy and in the metabolic memory associated with its continued progression. Curr Med Chem 20:3226–3233PubMedCrossRefGoogle Scholar
  5. 5.
    Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625PubMedCrossRefGoogle Scholar
  6. 6.
    Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344PubMedCrossRefGoogle Scholar
  7. 7.
    Bokoch GM, Knaus UG (2003) NADPH oxidases: not just for leukocytes anymore. Trends Biochem Sci 28:502–508PubMedCrossRefGoogle Scholar
  8. 8.
    Syed I, Kyathanahalli CN, Jayaram B et al (2011) Increased phagocyte-like NADPH oxidase and reactive oxygen species generation in type 2 diabetic ZDF rat and human islets: role of Rac1-Jun NH2-terminal kinase 1/2 signaling pathway in mitochondrial dysregulation in the diabetic Islet. Diabetes 60:2843–2852PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bokoch GM, Zhao T (2006) Regulation of the phagocyte NADPH oxidase by Rac GTPase. Antioxid Redox Signal 8:1533–1548PubMedCrossRefGoogle Scholar
  10. 10.
    Sarfstein R, Gorzalczany Y, Mizrahi A et al (2004) Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras. J Biol Chem 279:16007–16016PubMedCrossRefGoogle Scholar
  11. 11.
    Veluthakal R, Madathilparambil SV, McDonald P, Olson LK, Kowluru A (2009) Regulatory roles for Tiam1, a guanine nucleotide exchange factor for Rac1, in glucose-stimulated insulin secretion in pancreatic beta-cells. Biochem Pharmcol 77:101–113CrossRefGoogle Scholar
  12. 12.
    Kowluru A (2010) Small G-proteins in islet -cell function. Endocr Rev 31:52–76PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    van Rijssel J, van Buul JD (2012) The many faces of the guanine-nucleotide exchange factor trio. Cell Adhes Migr 6:482–487CrossRefGoogle Scholar
  14. 14.
    Syed I, Kyathanahalli CN, Kowluru A (2011) Phagocyte-like NADPH oxidase generates ROS in INS 832/13 cells and rat islets: role of protein prenylation. Am J Physiol 300:756–762Google Scholar
  15. 15.
    Subasinghe W, Syed I, Kowluru A (2011) Phagocyte-like NADPH oxidase promotes cytokine-induced mitochondrial dysfunction in pancreatic beta-cells: evidence for regulation by Rac1. Am J Physiol 300:12–20Google Scholar
  16. 16.
    Mohammed AM, Syeda K, Hadden T, Kowluru A (2013) Upregulation of phagocyte-like NADPH oxidase by cytokines in pancreatic beta-cells: attenuation of oxidative and nitrosative stress by 2-bromopalmitate. Biochem Pharmacol 85:109–114PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Jarrett SG, Lin H, Godley BF, Boulton ME (2008) Mitochondrial DNA damage and its potential role in retinal degeneration. Prog Retin Eye Res 27:596–607PubMedCrossRefGoogle Scholar
  18. 18.
    Trudeau K, Molina AJ, Guo W, Roy S (2010) High glucose disrupts mitochondrial morphology in retinal endothelial cells: implications for diabetic retinopathy. Am J Pathol 177:447–455PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Santos JM, Tewari S, Goldberg AFX, Kowluru RA (2011) Mitochondria biogenesis and the development of diabetic retinopathy. Free Radic Biol Med 51:1849–1860PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Santos JM, Tewari S, Kowluru RA (2012) A compensatory mechanism protects retinal mitochondria from initial insult in diabetic retinopathy. Free Radic Biol Med 53:1729–1737PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Zhong Q, Kowluru RA (2011) Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy. Diabetes 60:1304–1313PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Kanwar M, Chan PS, Kern TS, Kowluru RA (2007) Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Invest Ophthalmol Vis Sci 48:3805–3811PubMedCrossRefGoogle Scholar
  23. 23.
    Kowluru RA, Mohammad G, Dos Santos JM, Zhong Q (2011) Abrogation of MMP9 gene protects against the development of retinopathy in diabetic mice by preventing mitochondrial damage. Diabetes 60:3023–3033PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Mohammad G, Kowluru RA (2012) Diabetic retinopathy and signaling mechanism for activation of matrix metalloproteinase-9. J Cell Physiol 227:1052–1061PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Tewari S, Zhong Q, Santos JM, Kowluru RA (2012) Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy. Investig Ophthalmol Vis Sci 53:4881–4888CrossRefGoogle Scholar
  26. 26.
    Tewari S, Santos JM, Kowluru RA (2012) Damaged mitochondrial DNA replication system and the development of diabetic retinopathy. Antioxid Redox Signal 17:492–504PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Al-Shabrawey M, Bartoli M, El-Remessy AB et al (2005) Inhibition of NAD(P)H oxidase activity blocks vascular endothelial growth factor overexpression and neovascularization during ischemic retinopathy. Am J Pathol 167:599–607PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Touyz RM, Chen X, Tabet F, Yao G et al (2002) Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 90:1205–1213PubMedCrossRefGoogle Scholar
  29. 29.
    Kowluru A, Veluthakal R (2005) Rho guanosine diphosphate-dissociation inhibitor plays a negative modulatory role in glucose-stimulated insulin secretion. Diabetes 54:3523–3529PubMedCrossRefGoogle Scholar
  30. 30.
    Veluthakal R, Kaur H, Goalstone M, Kowluru A (2007) Dominant negative alpha subunit of farnesyl- and geranyl-transferase inhibits glucose-stimulated insulin secretion from insulin-secreting INS-cells. Diabetes 56:204–210PubMedCrossRefGoogle Scholar
  31. 31.
    Santos JM, Kowluru RA (2011) Role of mitochondria biogenesis in the metabolic memory associated with the continued progression of diabetic retinopathy. Invest Ophthalmol Vis Sci 52:8791–8798PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Lassegue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30:653–661PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Takac I, Schroder K, Brandes RP (2012) The Nox family of NADPH oxidases: friend or foe of the vascular system? Curr Hypertens Rep 14:70–78PubMedCrossRefGoogle Scholar
  34. 34.
    Kowluru A (2011) Friendly, and not so friendly, roles of Rac1 in islet ß-cell function: lessons learnt from pharmacological and molecular biological approaches. Biochem Pharmacol 81:965–975PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Li JM, Shah AM (2002) Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J Biol Chem 277:19952–19960PubMedCrossRefGoogle Scholar
  36. 36.
    Saito Y, Geisen P, Uppal A, Hartnett ME (2007) Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity. Mol Vis 13:840–853PubMedCentralPubMedGoogle Scholar
  37. 37.
    Cacicedo JM, Benjachareowong S, Chou E, Ruderman NB et al (2005) Palmitate-induced apoptosis in cultured bovine retinal pericytes: roles of NAD(P)H oxidase, oxidant stress, and ceramide. Diabetes 54:1838–1845PubMedCrossRefGoogle Scholar
  38. 38.
    Al-Shabrawey M, Rojas M, Sanders T et al (2008) Role of NADPH oxidase in retinal vascular inflammation. Invest Ophthalmol Vis Sci 49:3239–3244PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Du Y, Veenstra A, Palczewski K, Kern TS (2013) Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci U S A 110:16586–16591PubMedCrossRefGoogle Scholar
  40. 40.
    Al-Shabrawey M, Bartoli M, El-Remessy AB et al (2008) Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy. Invest Ophthalmol Vis Sci 49:3231–3238PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Tawfik A, Sanders T, Kahook K, Akeel S, Elmarakby A, Al-Shabrawey M (2009) Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. Invest Ophthalmol Vis Sci 50:878–884PubMedCrossRefGoogle Scholar
  42. 42.
    Wilkinson-Berka JL, Rana I, Armani R, Agrotis A (2013) Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy. Clin Sci (Lond) 124:597–615CrossRefGoogle Scholar
  43. 43.
    Syed I, Jayaram B, Subasinghe W, Kowluru A (2010) Tiam1/Rac1 signaling pathway mediates palmitate-induced, ceramide-sensitive generation of superoxides and lipid peroxides and the loss of mitochondrial membrane potential in pancreatic beta-cells. Biochem Pharmacol 80:874–883PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Shen E, Li Y, Li Y et al (2009) Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. Diabetes 58:2386–2395PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Li J, Zhu H, Shen E, Wan L, Arnold JM, Peng T (2010) Deficiency of rac1 blocks NADPH oxidase activation, inhibits endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of type 1 diabetes. Diabetes 59:2033–2042PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Thomas PS, Kim J, Nunez S, Glogauer M, Kaartinen V (2010) Neural crest cell-specific deletion of Rac1 results in defective cell-matrix interactions and severe craniofacial and cardiovascular malformations. Dev Biol 340:613–625PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Valente AJ, Yoshida T, Clark RA, Delafontaine P, Siebenlist U, Chandrasekar B (2013) Advanced oxidation protein products induce cardiomyocyte death via Nox2/Rac1/superoxide-dependent TRAF3IP2/JNK signaling. Free Radic Biol Med 60:125–135PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2014

Authors and Affiliations

  • Renu A. Kowluru
    • 1
  • Anjaneyulu Kowluru
    • 2
    • 3
  • Rajakrishnan Veluthakal
    • 1
  • Ghulam Mohammad
    • 1
    • 4
  • Ismail Syed
    • 2
    • 5
  • Julia M. Santos
    • 1
  • Manish Mishra
    • 1
  1. 1.Department of OphthalmologyWayne State UniversityDetroitUSA
  2. 2.Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitUSA
  3. 3.John D. Dingell VA Medical CenterDetroitUSA
  4. 4.Department of OphthalmologyKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Department of Endocrinology, Diabetes and Metabolism, Beth Israel HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations